

National Aeronautics and Space Administration Goddard Earth Science Data Information and Services Center (GES DISC)

README Document for the Tropical Rainfall Measurement Mission (TRMM) Version 7

Last Revised July 6, 2017

Goddard Earth Sciences Data and Information Services Center (GES DISC) https://disc.gsfc.nasa.gov NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

Kyle MacRitchie

Collaborator's Name

Name GES DISC GSFC Code 610.2 8/31/2015

Date

Name Collaborator Address

Reviewed By:

Reviewer Name

Reviewer Name GES DISC GSFC Code 610.2 Date

Date

Goddard Space Flight Center Greenbelt, Maryland

Revision History

Revision Date	Changes	Author
August 31, 2015	This document was first created.	Kyle MacRitchie
December 8, 2015	Fixed some typos and missing information.	Kyle MacRitchie
December 16, 2015	Fixed some typos.	Kyle MacRitchie
July 6, 2017	Changes to section 1.2, p10	G. Huffman, D. Bolvin

Table of Contents

1.0 Introduction	5
1.1 Dataset/Mission Instrument Description	5
1.1.1 Dataset/Instruments	7
1.2 Algorithm Background	8
1.3 Data Disclaimer	11
1.3.1 Acknowledgement	11
1.3.2 Contact Information	11
2.0 Data Organization	12
2.1 File Naming Convention	12
2.2 File Format and Structure	13
2.3 Key Science Data Fields	14
3.0 Data Contents	14
3.1 Dimensions	14
3.2 Global Attributes	16
3.3 Products and Variables	18
4.0 Options for Reading the Data	61
4.1 Command Line Utilities and Programs	61
4.1.1 GrADS	61
4.1.2 MATLAB	62
4.1.3 Python	64
4.1.4 hdp and ncdump	65
4.2 Tools/Programming	67
5.0 Data Services	68
6.0 More Information	69
7.0 Acknowledgements	70

1.0 Introduction

This document provides basic information for using Tropical Rainfall Measurement Mission (TRMM) products.

The TRMM datasets consist of products generated for studying precipitation in the tropics. These products include observations of radiances, microwave temperature, radar reflectivity, rainfall rate, vertical rainfall profile, and convective and stratiform heating.

TRMM was launched on November 27, 1997 and decommissioned on April 15, 2015. It reentered Earth's atmosphere in June 2015.

1.1 Dataset/Mission Instrument Description

Each of the TRMM datasets listed below is created using algorithms that are explained in more detail in section 1.2.

Applicable Data Products

	Product ID	Product Name	Temporal Resolution	Horizontal Resolution (x and y)
	1B01	Visible and Infrared Scanner (VIRS) Level 1 Raw and Calibrated Radiance Products	16 orbits / day	2.2 km
	1B11	TRMM Microwave Imager (TMI) Level 1 Raw and Calibrated Radiance Product	16 orbits / day	4.4 km, 5.1 km
	1B21	TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products	16 orbits / day	4.3 km, 5.0 km
	1C21	TRMM Precipitation Radar (PR) Level 1 Power and Reflectivity Products	16 orbits / day	4.3 km, 5.0 km
Orbital	2A12	TRMM Microwave Imager (TMI) Level 2 Hydrometeor Profile Product	16 orbits / day	4.4 km, 5.1 km
ō	2A21	TRMM Precipitation Radar (PR) Level 2 Surface Cross-Section Product	16 orbits / day	4.3 km, 5.0 km
	2A23	TRMM Precipitation Radar (PR) Level 2 Rain Characteristics Product	16 orbits / day	4.3 km, 5.0 km
	2A25	TRMM Precipitation Radar (PR) Level 2 Rainfall Rate and Profile Product	16 orbits / day	4.3 km, 5.0 km
	2B31	TRMM Combined Precipitation Radar (PR) and TRMM Microwave Imager (TMI) Rainfall Profile Product	16 orbits / day	4.3 km, 5.0 km
	3A11	TRMM Microwave Imager (TMI) Gridded Oceanic Rainfall Product	Monthly	5.0°
	3A12	TRMM Microwave Imager (TMI) Level 3 Monthly 0.5 degree x 0.5 degree Profiling V7	Monthly	0.5°
	3A25	TRMM Precipitation Radar (PR) Gridded Rainfall Product	Monthly	0.5° and 5.0°
	3A26	TRMM Precipitation Radar (PR) Gridded Surface Rain Total Product	Monthly	5.0°
Gridded	3B31	TRMM Combined Precipitation Radar (PR) and TRMM Microwave Imager (TMI) Gridded Rainfall Product	Monthly	0.5°
	3A46	TRMM Monthly 1 x 1 Degree SSM/I Rain Data V2	Monthly	1.0°
	3B42	TRMM/TMPA 3-Hourly 0.25 deg. TRMM and Others Rainfall Estimate Data	3 hourly	0.25°
	3B43	TRMM/TMPA and Other Sources Monthly Rainfall Product	Monthly	0.25°
	CSH	TRMM Level 3 Monthly 0.5 degree x 0.5 degree Convective and Stratiform Heating CSH	Monthly	0.5°

Table 1 below provides an overview of the 18 TRMM products discussed in this document.

Table 1. All horizontal resolutions are identical in the x and y directions (e.g. 2.2 km means 2.2 km x 2.2 km). Multipleresolutions refer to pre-boost (before 2001-08-07) and post-boost (after 2001-08-24) values respectively. Details on all thesedatasets can be found in Section 3.3.

1.1.1 Dataset/Instruments

The Tropical Rainfall Measurement Mission (TRMM) is a collaborative effort between NASA and the Japanese Aerospace Exploration Agency (JAXA). The TRMM observatory, which housed the first-ever precipitation radar in space, was launched in 1997 into a near circular orbit of approximately 350 kilometers with a period of 92.5 minutes (15.6 orbits per day). During the period of 2001/8/7 to 2001/8/14, the average operating altitude changed from 350 km to 403 km (referred to also as TRMM Boost). The datasets described in this document were created using data from the TRMM observatory and its partner satellites.

Multiple instruments are used throughout the TRMM satellite constellation. They are described briefly below.

Precipitation Radar (PR): The PR was the first spacebourne instrument designed to provide three-dimensional plots of storm structure. It has a horizontal resolution of about 5 km and a swath width of 247 km. It can provide vertical profiles of rain and snow from the surface to a height of 20 km and is sensitive to light rain rates as low as 0.5 mm/hr.

TRMM Microwave Imager (TMI): The TMI is a passive microwave sensor based on the Special Sensor Microwave/Imager (SSM/I). It measures the intensity of radiation at 10.7, 19.4, 21.3, 37, and 85.5 GHz.

Visible Infrared Scanner (VIRS): The VIRS senses radiation in the visible and infrared wavelengths of 0.63, 1.6, 10.8, and 12 micrometers. The VIRS has a horizontal resolution of 2.4 km and a swath width of about 833 km.

Below is a table summary of the instrument specifications adapted from the NASA Precipitation Measurement Missions website.

	PR	TMI	VIRS
Frequencies	13.8 GHz	10.7, 19.4, 21.3, 37, 85.5 GHz	Wavelengths: 0.63, 1.6, 10.8, 12 μm
Resolution	5 km horizontal, 250 m vertical	11 km x 8 km at 37 GHz	2.4 km
Scanning	Cross-track	Conical	Cross-track
Swath Width	247 km	878 km	833 km

Table 2. Summary of instrument specifications.

1.2 Algorithm Background

This section describes how each dataset is created.

1B01: The TRMM Visible and Infrared Scanner (VIRS) Level 1B Calibrated Radiance Product contains calibrated radiances and auxiliary geolocation information from the five channels of the VIRS instrument for each pixel of each scan. The EOSDIS "swath" structure is used to accommodate the actual geophysical data arrays. Sixteen files of VIRS 1B01 data are produced each day.

For channels 1 and 2, Level 1B radiances are derived from the Level 1A (1A01) sensor counts by computing calibration parameters (gain and offset) derived from the counts registered during space and solar and/or lunar views. New calibration parameters are produced every one to four weeks. Channels 3, 4, and 5 are calibrated using the internal blackbody and the space view. These calibration parameters, together with a quadratic term determined pre-launch, are used to generate a counts vs. radiance curve for each band, which is then used to convert the earth-view pixel counts to spectral radiances.

Geolocation and channel data are written out for each pixel along the scan, whereas the time stamp, scan status (containing scan quality information), navigation, calibration coefficients, and solar/satellite geometry are specified on a per-scan basis. There are in general 18,026 scans along the orbit pre-boost and 18,223 post-boost, with each scan consisting of 261 pixels. The scan width is about 720 km pre-boost and 833 km post-boost.

1B11: This is the TRMM Microwave Imager (TMI) LEVEL 1B calibrated Brightness Temperature (T_b) data product. The TMI calibration algorithm (1B11) converts the radiometer counts to antenna temperatures by applying a linear relationship of the form $T_a = c_1 + c_2 x$ count. The coefficients are provided by the instrument contractor. Antenna temperatures are corrected for cross-polarization and spill over to produce brightness temperatures (T_b) , but no antenna beam pattern correction or sample to pixel averaging are performed. Temperatures are provided at 104 scan positions for the low frequency channels and 208 scan positions at 85 GHz. There are four samples per pixel (3 dB beam width) at 10 GHz, two samples at 19, 22, and 37 GHz, and one sample per pixel for the 85 GHz.

1B21: The PR calibration algorithm (1B21) converts the counts of radar echoes and noise levels into engineering values (power) and outputs the radar echo power and noise power separately. The algorithm also detects and flags the range bin with return power that exceeds a predetermined threshold value.

1C21: The PR reflectivity algorithm (1C21) converts the power and noise estimates from 1B21 to radar reflectivity factors (Z-factors). In order to reduce output data volume, only pixels with power that exceeds the minimum echo detected in 1B21 are converted and stored.

2A12: This product contains surface rainfall and vertical hydrometeor profiles on a pixel-bypixel basis from the TMI brightness temperature data using the Goddard Profiling algorithm GPROF2008. Because the vertical information comes from a radiometer, it is not written in independent vertical layers like the TRMM PR. Instead, the output references the 100 typical structures for each hydrometeor or heating profile. These vertical structures are referenced as clusters in the output structure. Vertical hydrometeor profiles can be reconstructed to 28 layers by knowing the cluster number (i.e. shape) of the profile and a scale factor that is written for each pixel.

2A21: This is the sigma zero algorithm, which inputs the PR power (1B21) and computes estimates of the path attenuation and its reliability by using the surface as a reference target. It also computes the spatial and temporal statistics of the surface scattering cross section and classifies the cross sections into land/ocean and rain/no rain categories.

2A23: This dataset contains PR (13.8 GHz) precipitation characteristics at 5 km horizontal resolution over a 247 km swatch including rain/no-rain decision and freezing level.

2A25: The average rainfall rate between the two pre-defined altitudes is calculated for each beam position. Other output data include parameters of Z-R relationships, integrated rain rate of each beam, range bin numbers of rain layer boundaries, and many intermediate parameters.

2B31: This combined rainfall product is derived from vertical hydrometeor profiles using data from the PR radar and TMI. It also includes computed correlation-corrected, mass-weighted, mean drop diameter and its standard deviation, and latent heating.

3A11: This is the TMI Monthly 5° x 5° Oceanic Rainfall Product. Algorithm 3A11 estimates monthly rain from the histogram of the brightness temperatures obtained from TMI calibration (1B11). This histogram is matched to a log-normally distributed rain rate distribution via a rain rate-brightness temperature relation. A beam-filling correction is applied to account for the non-uniformly filled field-of-view of the TMI sensor. Outputs are monthly surface rain rates and freezing heights for 5° x 5° grid boxes.

3A12: This is a monthly version of the 2A12 data product.

3A25: This product consists of monthly statistics of the PR measurements at both a low ($5^{\circ} \times 5^{\circ}$) and a high ($0.5^{\circ} \times 0.5^{\circ}$) horizontal resolution. The low resolution grids are in the Planetary Grid 1 structure and include 1) mean and standard deviation of the rain rate, reflectivity, path-

integrated attenuation (PIA), storm height, Xi, bright band height and the NUBF (Non-Uniform Beam Filling) correction; 2) rain fractions; 3) histograms of the storm height, bright-band height, snow-ice layer, reflectivity, rain rate, path-attenuation and NUBF correction; 4) correlation coefficients. The high resolution grids are in the Planetary Grid 2 structure and contain mean rain rate along with standard deviation and rain fractions.

3A26: This dataset contains PR monthly surface rainfall. These data were derived from rain rate statistics and include the estimated values of the probability distribution function of the space-time rain rates at four levels (2 km, 4 km, 6 km, and path-averaged) and the mean, standard deviation, and probability of rain derived from these distributions. Three different rain rate estimates are used as input to the algorithm: (1) the standard Z-R (or 0th-order estimate having no attenuation correction); (2) the Hitschfield-Bordan (H-B); and (3) the rain rates taken from 2A25.

3A46: This rainfall product contains data derived from the monthly SSM/I data averaged over 1° x 1° boxes each month. These data are used as input to the 3B43 monthly product described below.

3B31: This is a combined rainfall product. 3B31 uses the high quality retrievals done for the narrow swath in 2B31 to calibrate the wide swath retrievals generated in 2A12. For each 0.5° x 0.5° box and each vertical layer, an adjustment ratio is calculated for the swath overlap region for one month. Only TMI pixels with 2A12 pixelStatus equal to zero are included in monthly averages, which effectively removes sea ice.

3B42: The data product consists of TRMM Multi-Satellite Precipitation Analysis (TMPA) Rainfall Estimate Product 3B42 Version 7 (V7), which merges satellite rainfall estimates (S) with gauge data (G). First, all non-TRMM microwave precipitation estimates The 3B42 algorithm first combines microwave precipitation estimates from multiple low-earth-orbiting satellites are calibrated to the TRMM Microwave Imager precipitation (TMI; TRMM product 2A12) and then calibrated to the TRMM Combined Instrument precipitation (TCI; TRMM product 2B31). These are merged to produce a 3 hourly microwave-only best estimate. The infrared precipitation estimates (from multiple geosynchronous satellites) are then calibrated to the microwave estimate and used to fill in the regional gaps in the merged microwave field to produce a combined satellite rainfall estimate every 3 hours. These 3-hourly combined satellite estimates are then summed to the monthly scale and recalibrated with a monthly precipitation gauge analysis to provide the final SG-merged precipitation estimate as a Level 3 (L3) 3 hourly 0.25° x 0.25° quasi-global (50°N-S) gridded SG-rainfall database. Estimates of root-mean-square (RMS) precipitation error are also provided.

3B43: The data product consists of TRMM Multi-Satellite Precipitation Analysis (TMPA) Rainfall Estimate Product 3B43 Version 7 (V7), which merges satellite rainfall estimates (S) with gauge data (G) into gridded estimates on a calendar month temporal resolution and a 0.25° by 0.25° spatial resolution global band extending from 50°S to 50°N latitude. This algorithm is executed once per calendar month to produce the average best-estimate precipitation rate and RMS precipitation-error estimate field (3B43) described in 3B42 prior to recalibration of the 3 hourly product.

CSH: This is the convective and stratiform heating product. Convective and stratiform heating profiles are separated by comparing heating profiles from TRMM sensors to a lookup table of heating profiles mostly generated by the Goddard Cumulus Ensemble Cloud Resolving Model.

1.3 Data Disclaimer

1.3.1 Acknowledgement

If you use these data in publications, please acknowledge the Tropical Rainfall Measuring Mission (TRMM) as well as the Goddard Earth Sciences Data and Information Services Center (GES DISC) for the dissemination of the data. The standard for data citation can be found under the "Data Citation" tab on any of the TRMM product pages:

https://disc.gsfc.nasa.gov/datasets?project=TRMM

1.3.2 Contact Information

If you need assistance or wish to report a problem please use the following contact information:

Email: _gsfc-dl-help-disc at mail.nasa.gov Voice: 301-614-5268 Fax: 301-614-5268

Address:

Goddard Earth Sciences Data and Information Services Center (GES DISC) NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

2.0 Data Organization

All datasets are stored in files that correspond to their temporal resolution. For example, the 3-hourly 3B42 data are stored in eight files per day at 00 UTC, 03 UTC, 06 UTC, etc. and monthly files are stored in separate files for each month.

2.1 File Naming Convention

File names involve some combination of the following attributes:

- <date> The date is always in a format with the last 2 digits of the year following by the month and the day, always with a leading zero. An example for 4 August 2009 would be: 090804.
- <orbit_number> This is the 5 digit orbit number.
- <product_version> This is the product version. The most recent version is 7.

Product ID	File Naming Convention	Format
1B01	1B01. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B11	1B11. <date>.<orbit_number>.<product_version>.HDF</product_version></orbit_number></date>	HDF4
1B21	1B21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
1C21	1C21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A12	2A12. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A21	2A21. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A23	2A23. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2A25	2A25. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
2B31	2B31. <date>.<orbit_number>.<product_version>.HDF.Z</product_version></orbit_number></date>	Compressed HDF4
3A11	3A11. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A12	3A12. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A25	3A25. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A26	3A26. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B31	3B31. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3A46	3A46. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
3B42	3B42. <date>.<hour>.<product_version>.HDF.Z</product_version></hour></date>	Compressed HDF4
3B43	3B43. <date>.<product_version>.HDF.Z</product_version></date>	Compressed HDF4
CSH	CSH. <date>.<product_version>.HDF</product_version></date>	HDF4

Table 3. File naming conventions.

2.2 File Format and Structure

TRMM files are in the Hierarchical Data Format Version 4 (HDF-4), developed at the National Center for Supercomputing Applications (https://www.hdfgroup.org). These extensions facilitate the creation of Grid, Point, and Swath data structures, depending on whether the data are orbital or gridded.

Orbital (levels 1 and 2) data are stored in HDF-4 files that use the swath structure.

The variables within the orbital TRMM files (the product IDs that begin with a "1" or a "2") contain Swath data structures with dimensions of (nscan x nray). The gridded variables have dimensions of (longitude x latitude). Three-dimensional variables, found in the gridded files, have a third dimension of height above the surface, measured in kilometers.

Missing data are represented by values that are less than or equal to -99, -9999, -9999, -9999.9, and -9999.9 corresponding to 1-byte integers, 2-byte integers, 4-byte floats, and 8-byte floats.

Array dimensions are ordered so that the first dimension has the most rapidly varying index and the last dimension has the least rapidly varying index, which is sometimes called column-major

ordering. Languages such as Fortran, MATLAB, and R use column-major ordering naturally. If you use row-major languages such as C++ and Python, it is recommended that you reverse the order of the dimensions of the arrays for optimal performance.

2.3 Key Science Data Fields

Below are the variables, and the products in which they are found, that we expect to be the most popular.

Product ID	Variable Name	Description	Dimensions	Units	
	surfaceRain	Surface Rainfall Rate	lat x lon	mm hr-1	
	convectPreciptiation	Surface Convective Rain Rate	level x lat x lon	mm hr-1	
	surfacePrecipitation	Surface Precipitation Rate	lat x lon	mm hr-1	
3A12	cldIce	Cloud Ice Water Content	level x lat x lon	g m⁻³	
Monthly Data	cldWater	Cloud Liquid Water Content	level x lat x lon	g m⁻³	
	snow	Snow Liquid Content	level x lat x lon	g m⁻³	
	graupel	Graupel Liquid Water Content	level x lat x lon	g m⁻³	
	latentHeat	Latent Heat Release	level x lat x lon	K hr⁻¹	
	precipitation	Surface Precipitation Estimate	lat x lon	mm hr⁻¹	
3B42	HQprecipitation	Microwave Precipitation Estimate*	lat x lon	mm hr⁻¹	
3-Hourly Data IRprecipitation I		Infrared Precipitation Estimate* lat x		mm hr⁻¹	
	relativeError	Random Error Estimate	lat x lon	mm hr⁻¹	
3B43 precipitation Surface Precipitation Estimate		Surface Precipitation Estimate	lat x lon	mm hr⁻¹	
Monthly Data	relativeError	r Random Error Estimate lat x lon		mm hr-1	
Table 4. Descript	Table 4. Description of popular variables.				

Variables marked with a * are only found in version 7, not version 6.

3.0 Data Contents

3.1 Dimensions

The dimensions of the variables within the files vary by processing level, which refers to the "1", "2", or "3" at the beginning of the product ID. A summary of the dimensionality of the most common variables is given below. See section 3.3 for more details on each individual dataset.

Level 1 Data: 1XXX

Most of these variables have dimensions of *nscan* x *nray*. *nscan* refers to the number of scans in each granule, which varies by file. The second dimension, *nray* refers to the number of angle bins in each scan, which is always 49.

Level 2 Data: 2XXX

These variables have various numbers of dimensions made up of the ones listed below.

ncluster: number of clusters at each freezing height, always 100
nlayer: number of profiling layers, always 28
npixel: number of pixels in each scan, always 208
nfindex: number of freezing height indices, always 13
nspecies: number corresponding to the hydrometeor species. Table 5 below lists the species.

Species Number	Description	Units
1	Cloud liquid water content	g m⁻³
2	Rain water content g m	
3	Cloud ice water content g m	
4	Snow water content g m ⁻³	
5	Graupel water content g m	
6	Latent heating K h ⁻¹	

Table 5. Description of hydrometeor species.

Level 3 Data: 3XXX

These variables are on geographic grids and have various combinations of the dimensions listed below.

nlat: number of latitudes

nlon: number of longitudes

nlayer: number of vertical layers denoting the height above the surface. There are 28 vertical layers beginning at 0.5 km and increasing in 0.5 km intervals to 10 km and then 1 km intervals to 18 km.

All 32-bit variables have *units* attributes to make them COARDS-compliant.

Resolution

TRMM data are available on a variety of grids depending on the products chosen. Table 1 shows the temporal and horizontal resolutions associated with each TRMM product.

Temporal resolutions vary between 16 orbits/day (90 minutes), 3-hourly, and monthly. 3-hourly data exist at the synoptic and intermediate synoptic times of 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Sub-daily data represent observations taken at that instant whereas monthly data represent monthly averages.

The orbital data products (1XXX and 2XXX) have latitude and longitude variables contained within the HDF files to allow proper swath mapping. Gridded files (3XXX) do not have explicit latitude and longitude information. Instead, the gridded files contain the *LatitudeResolution*, *LongitudeResolution*, *NorthBoundingCoordinate*, *SouthBoundingCoordinate*, *EastBoundingCoordinate*, *WestBoundingCoordinate* metadata and generally span 50°S to 50°N and 180°W to 180°E. Some products only span 38°S to 38°N, see section 3.3 for specific details.

Gridded TRMM products use the center of grid boxes for their latitude and longitude coordinates. For example, the TRMM 3B42 dataset, which spans 50°S to 50°N and 180°W to 180°E has a grid that goes from 49.875°S TO 49.875°N and 179.875°W to 179.875°E. Consult the sample code in Section 4 of this Readme for specific examples.

Detailed information on data resolution can be found in the <u>PPS File Specification document</u> cited at the end of this Readme document.

3.2 Global Attributes

In addition to SDS arrays containing variables and dimension scales, global metadata are also stored in the files. Some metadata are required by standard conventions, some are present to meet data provenance requirements, and others as a convenience to users of TRMM products. A summary of global attributes present in all files is shown in Table 6.

Global Attribute	Description	
AlgorithmID	The algorithm that generated the product.	
AlgorithmVersion	The version of the algorithm specified as the AlgorithmID.	
FileName	The file name.	
GenerationDateTime	The date and time the granule was generated.	
StartGranuleDateTime	The start time of the data in the granule.	
StopGranuleDateTime	The stop time of the data in the granule.	
GranuleNumber	The granule number.	
NumberOfSwaths	The number of swaths in the granule.	
NumberOfGrids	The number of grid structures in the granule.	
GranuleStart The granule's orbit starting place.		
TimeInterval	The time interval covered by the granule. Possible values are: ORBIT,	
HALFORBIT, HOUR, 3_HOUR, DAY, MONTH, and CONTACT.		
ProcessingSystem	The name of the processing system.	
ProductVersion	The data version assigned by ProcessingSystem.	
MissingData	The number of missing scans.	

 Table 6. Description of global attributes.

Name	Туре	Description	A list of ke
FillValue	float32	Floating-point value used to identify missing	metadata
		data. Will normally be set to	fields can
		1e15. Not included in every TRMM file.	found in
Units	string	The units of the variable. Must be a string that	Table 7.
		can be recognized by	
		UNIDATA's Udunits package.	Global
Scale_factor	float32	If variable is packed as 16-bit integers, this is the	attributes
		scale_factor for	a Data Set
		expanding to floating-point.	Name file

Table 7. Key Metadata Items

viewed with the *ncdump* software: ncdump –h -c <TRMM file>.

key а n be es in et e can be

3.3 Products and Variables

1B01: Visible and Infrared Radiance

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Coographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Horizontal Resolution	2.2 km	2.4 km
	Swath Width: 720 km	Swath Width: 833 km
	Pixels/Scan: 261	Pixels/Scan: 261
Scan Characteristics	Scans/Second (SS): 2*98.5/60	Scans/Second (SS): 2*98.5/60
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5490
	Average Scans/Orbit: nscan = 18026	Average Scans/Orbit: 5550 = 18223
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 137 MB	≈ 138 MB

	1B01 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata Product specific metada	Char Attribute ata	10,000	-	-	-	-
Swath Structure	Char Attribute	5,000	-	-	-	-
Specifications for the sy	wath geometry					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with ea	ach scan					
Latitude	Float SDS	4	261*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	261*scan	-	-	degree
Longitude information						
Scan Status	Vdata Table	19	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric in						
Solar Cal	Vdata Table	32	nscan	-	-	-
Solar unit vector in Geo	centric Inertial Co	ordinates and	the Sun-Earth dis	tance		
Calibration Counts	Integer SDS	2	5*2*3*nscan	-	-	-
Raw calibration counts	Raw calibration counts data					
Temperature Counts		2	6*nscan	-	0 – 4095	counts
Primary and redundant	temperatures for	the black bod	y, radiant cooler,	and the electro	onics module	
Local Direction	Float SDS	4	2*2*27*nscan	-	-	degree
Angles to the satellite a	Angles to the satellite and sun from the IFOV pixel position on the earth					
Channels	Float SDS	4	5*261*nscan	depends	depends	mW cm⁻²µm⁻¹ sr⁻¹
Scene data for the five	channels					

Solar Unit Vector			
Name Format Description			
Solar Position	3 * 8-byte float	Sun Unit Vectors: x-, y-, and z-components	
Distance 8-byte float Sun-Earth Distance (m)			

Raw Calibration Counts Data				
Dimension Data Stored				
1	Channel number			
2	Data word			
3	Blackbody, space view, solar diffuser			
4	Number of scans			

	Local Direction Angles					
Dimension	Data Stored	Data Stored Description				
		The zenith angle is measured between the local pixel geodetic zenith and				
1	zenith, azimuth	the direction to the satellite. The azimuth angle is measure clockwise				
		from the local north direction toward the local east direction.				
2	object	The object to which the directions point, namely the satellite and the				
Z	object	sun.				
3	nivel number	Angles are given only for every tenth pixel along a scan: e.g. pixels 1, 11,				
3	pixel number	21,, 261.				
4	scan number	Scan line number				

	VIRS Range and Accuracy						
Channel	Minimum mW cm ⁻² µm ⁻¹ sr ⁻¹	Spectral Region	Wavelength (µm)				
1	0	65.5	10%	Visible	0.63		
2	0	32.7	10%	Near IR	1.60		
3	0	0.111	2%	Near IR	3.75		
4	0	1.371	2%	Near IR	10.80		
5	0	1.15	2%	IR	12.00		

1B11: Microwave Brightness Temperature (TMI)

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)	
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Spatial Resolution	4.4 km at 85.5 GHz	5.1 km at 85.5 GHz	
	Swath Width: 760 km	Swath Width: 878 km	
	Pixels/Scan: 104 (low resolution)	Pixels/Scan: 104 (low resolution)	
	208 (high resolution)	208 (high resolution)	
Scan Characteristics	Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60	
	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023	
	nscan = SS * SO + 100	nscan = SS * SO + 100	
Average File Size	≈ 16 MB	≈ 16 MB	

1B11 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geor	metry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each sca	n					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informat	tion					
Calibration	Vdata Table	95	nscan	-	-	-
Calibration						
Calibration Counts	Integer SDS	2	16*2*9*nscan	-	-	-
Calibration measurement, in co	ounts. Dimensions	s are: samples, lo	ad, channel, and n	scan.		
Satellite Local Zenith Angle	Float SDS	4	12*nscan	-	-	degree
Angle between the local pixel	geodetic zenith an	d the direction to	o the satellite. This	angle is given f	or every 20	-
resolution pixel along a scan: p	-					-
Low Resolution Channels	Integer SDS	2	7*104*nscan	(T-100)*100	-	К
Low resolution channels bright	Low resolution channels bright temperature					
High Resolution Channels	Integer SDS	2	2*208*nscan	(T-100)*100	-	К
High resolution channels brigh	t temperature					

TRMM 1B11 Scan Time					
Name Format		Description			
Year	2-byte integer	4-digit year, e.g., 1998			
Month	1-byte integer	The month of the year			
Day of Month	1-byte integer	The day of the month			
Hour	1-byte integer The hour (UTC) of the				
Minute	1-byte integer	The minute of the hour			
Second	1-byte integer	The second of the minute			
Day of Year	2-byte integer	The day of the year			

	TRMM 1B11 Channels						
Channel	Frequency Polarization Resolution						
1	10 GHz	Vertical	Low				
2	10 GHz	Horizontal	Low				
3	19 GHz	Vertical	Low				
4	19 GHz	Horizontal	Low				
5	21 GHz	Vertical	Low				
6	37 GHz	Vertical	Low				
7	37 GHz	Horizontal	Low				
8	85 GHz	Vertical	High				
9	85 GHz	Horizontal	High				

TRMM 1B11 Calibration				
Name	Format	Range		
Hot Load Temperature	3 x 2-byte integer	0 – 400 К		
The physical temperatures, in degrees Kelvii	n, for the 3 temperatu	re sensors attached to the hot load. This		
temperature is reduced by 80 K, multiplied b	by 100, and stored in t	he file as a 2-byte integer. Stored value = (T - 80)		
* 100.				
Hot Load Bridge	2-byte integer	0 – 4095		
The positive bridge voltage of the hot load b	ridge reference.			
Hot Load Bridge Reference near Zero	2-byte integer	4 - 4095		
Voltage	2-byte integer	4 - 4035		
The near zero voltage of the hot load bridge	reference.			
85.5 GHz Receiver Temperature	2-byte integer	-273.15 – 126.85°C		
The receiver shelf temperature of the 85.5 G	Hz channel. This tem	perature is increased by 200, multiplied by 100,		
and stored in the file as a 2-byte integer.				
Top Radiator Temperature	2-byte integer	-273.15 – 126.85°C		
The temperature of the top of the radiator of	hannel. This tempera	ture is increased by 200, multiplied by 100, and		
stored in the file as a 2-byte integer.				
Automatic Gain Control	9 x 1-byte integer	0 - 15		
Automatic gain control for the 9 channels in	counts.			
Calibration Coefficient A				
Calibration coefficient A (degrees Kelvin / co	ounts) for the 9 channe	els. Coefficient A for each channel is used in the		
following equation to convert counts, C, to a	intenna temperature,	$T_A: T_A = A^*C + B$		
Calibration Coefficient B				
Calibration coefficient B (degrees Kelvin) for	the 9 channels. Coeff	icient B for each channel is used in the following		
equation to convert counts, C, to antenna te	emperature, T_A : $T_A = A$	*C + B		

1B21: Precipitation Radar Power

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Horizontal Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Scan characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 67 MB	≈ 79 MB

	1B21	Data Format St	ructure: Part 1			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
PR Cal Coef	Vdata Table	4	18	-	-	-
Calibration coefficients for the coefficient (unitless, 1 record),						
Ray Header	Vdata Table	60	49	-	-	-
Information about each ray (an Each record describes one ray a		-		mber represents	s the angle bir	n number
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geon	netry					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with the scan,	expressed as 8-by	te float UTC seco	ond of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric information	on					
Powers	Vdata Table	6	nscan	-	-	-
Radar transmission power and	transmitted pulse	width				
System Noise	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm
System Noise (dBm) is an avera	ge of the 4 measu	red system noise	e values. Missing da	ta are given the	value of -32,	734.
System Noise Warning Flag	Integer SDS	1	nray*nscan	-	-	-
System Noise Warning Flag indi	cates possible con	tamination of lo	wer window noise	by high towers o	of rain. 1 mea	าร
possible contamination; 0 mean	ns no possible cont	tamination.				

	1B21 Data Format Structure: Part 2					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Minimum Echo Flag	Integer SDS	1	nray*nscan	-	-	-
Minimum echo flag indicates th		in the ray (angle				
Bin Storm Height	Integer SDS	2	2*nray*nscan	-	-	-
Bin storm height is the range bi	n number of the st	torm top.				
Satellite Local Zenith Angle	Float SDS	4	nray*nscan	-	-	-
Angle, in degrees, between the	local zenith and th	ne beam's center	line. The local (geo	odetic) zenith at	the intersecti	on of the
ray and the earth ellipsoid is use	ed.					
Spacecraft Range	Integer SDS	4	nray*nscan	-	-	m
Distance between the spacecra	ft and the center c	of the footprint o	of the beam on the	earth ellipsoid.		
Bin Start of Oversample	Integer SDS	2	2*29*nscan	-	-	-
Starting range bin number of th	e oversample (eith	ner surface or rai	in) data, counting fi	rom the top dow	/n.	
Land/Ocean Flag	Integer SDS	2	nray*nscan	-	-	-
Land or ocean information. The	-	are: 0 = water, 1	= land, 2 = coast, 3	s = water (w/ larg	ge attenuatio	n), 4 =
land/coast (w/ large attenuation	-				-	
Surface Detect Warning Flag	Integer SDS	2	nray*nscan	-	-	-
Definition TBD by NASDA.	U		,			
Bin Surface Peak	Integer SDS	2	nray*nscan	-	-	-
Range bin number of the peak s	-			ervation ground	processing, n	ot by the
on board surface detection. The						
Instrument and Scan Geometry	-				,	
Bin Ellipsoid	Float SDS	2	nray*nscan	-	-	-
Range bin number of the earth		-	may notan			
Bin Clutter Free Bottom	Integer SDS	2	2*nray*nscan	-	_	-
Range bin number of the lowes	•		•	or clutter free ce	ertain and no	sible
respectively. The clutter free ce			-			Sibic,
Bin DID Average	Integer SDS	2	nray*nscan	-	-	_
Mean range bin number of the	-	_	-	on the IFOV		
Bin DID Top	Integer SDS	2	2*nray*nscan	-	_	-
Range bin number of the maxim	0	—	•	OV The first dim	pension is the	hoy size
with sizes of 5 km x 5 km and 12				ov. me mst um		DUX 312C,
Bin DID Bottom	Integer SDS	2	2*nray*nscan			
Range bin number of the minim	0		•	- N/ Tho first dim	-	- hov sizo
with sizes of 5 km x 5 km and 12		evalion in a box		Jv. me mst um		DOX SIZE,
		2	140********	100	120 ~ 20	dDma
Normal Sample	Integer SDS	2	140*nray*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the norm	-	-				-
filled with a value of -32767. Ot					•	
including an entire scan of miss	ing pins, have the	value 01 -32/34.	The size of each ra	y is specified in i	Kay neader, v	liti di
accuracy of 0.9 dBm.		2	F*20*	100	120 - 20	10
Surface Oversample	Integer SDS	2	5*29*nscan	100	-120~-20	dBm dBm Bing
Return power (dBm) of the surf		-			-	
where data is not written due to			-	-	an of missing	oins,
have the value of -32734. In the						
Rain Oversample	Integer SDS	2	28*11*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the rain					-	
where data is not written due to				-	an of missing	oins,
have the value of -32734. In the	CrossTrack dimer	ision, Offset = -1	9 and Increment =	1.		

PR Powers				
Name	Format			
Radar Transmission Power	2-byte integer			
Total (sum) power of 128 SSPA elements corrected with SSPA temperature in orbit, based on temperature test data of				
SSPA transmission power. The	units are dBm * 100. For this variable, the TSDIS Toolkit does not provide scaling.			
Transmitted Pulse Width	4-byte float			
Transmitted pulse width (s) corrected with FCIF temperature in orbit, based on temperature test data of FCIF.				

	Minimum Echo Flag				
Value	Value Mean				
0	No Rain				
10	Rain Possible				
11	Rain Possible (echo greater than rain threshold #1 in clutter range)				
12	Rain Possible (echo greater than rain threshold #2 in clutter range)				
20	Rain Certain				

1B21 Bin Storm Height Description

Bin Storm Height is Range Bin Number of the storm top. The first dimension is threshold, with values of possible rain threshold and certain rain threshold in that order. The Bin Storm Heights are generated in the procedure to determine the Minimum Echo Flag. The Bin Storm Height is the top range bin of the portion of consecutive range bins that flagged the ray as rain possible or rain certain. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

1B21 Bin Start of Oversample Description

The first dimension is the Bin Start of Oversample and Surface Tracker Status. The second dimension is the ray. The number of rays is 29 because this information only applies to the rays that have oversample data (rays #11 to #39). The third dimension is the scan. The Surface Tracker Status has the value of 0 (Lock) or 1 (Unlock), where Lock means that (1) the on board surface detection detected the surface and (2) the surface detected later by processing on the ground fell within the oversample bins. Unlock means that Lock was not achieved. The range bin number is defined in this volume in the section on Precipitation Radar, Instrument and Scan Geometry.

1C21: Precipitation Radar Reflectivity

Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Horizontal Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Stan Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 44 MB	≈ 44 MB

	1C21 Data Format Structure: Part 1					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
PR Cal Coef	Vdata Table	4	18	-	-	-
Calibration coefficients for the l coefficient (unitless, 1 record), a			•		•	
Ray Header	Vdata Table	60	49	-	-	-
Information about each ray (an Each record describes one ray a				mber represents	s the angle bir	n number.
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geom	netry					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with the scan,	expressed as 8-by	te float UTC seco	ond of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informati	on					
Powers	Vdata Table	6	nscan	-	-	-
Radar transmission power and	transmitted pulse	width				
System Noise	Integer SDS	2	nray*nscan	100	-120 ~ -20	dBm
System Noise (dBm) is an avera	ge of the 4 measu	red system noise	e values. Missing da	ta are given the	value of -32,7	734.
System Noise Warning Flag	Integer SDS	1	nray*nscan	-	-	-
System Noise Warning Flag indi			wer window noise	by high towers o	of rain. 1 mear	าร
possible contamination; 0 mean	ns no possible cont	tamination.				

1C21 Data Format Structure: Part 2						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Minimum Echo Flag	Integer SDS	1	nray*nscan	-	-	-
Minimum echo flag indicates th		in the ray (angle				
Bin Storm Height	Integer SDS	2	2*nray*nscan	-	-	-
Bin storm height is the range bi	n number of the st	torm top.				
Satellite Local Zenith Angle	Float SDS	4	nray*nscan	-	-	-
Angle, in degrees, between the		ne beam's center	r line. The local (geo	odetic) zenith at	the intersect	on of the
ray and the earth ellipsoid is use						
Spacecraft Range	Integer SDS	4	nray*nscan	-	-	m
Distance between the spacecra		of the footprint o		earth ellipsoid.		
Bin Start of Oversample	Integer SDS	2	2*29*nscan	-	-	-
Starting range bin number of th		ner surface or rai		rom the top dow	/n.	
Land/Ocean Flag	Integer SDS	2	nray*nscan	-	-	-
Land or ocean information. The	values of the flag	are: 0 = water, 1	. = land, 2 = coast, 3	s = water (w/ lar	ge attenuatio	n) <i>,</i> 4 =
land/coast (w/ large attenuation	n).					
Surface Detect Warning Flag	Integer SDS	2	nray*nscan	-	-	-
Definition TBD by NASDA.						
Bin Surface Peak	Integer SDS	2	nray*nscan	-	-	-
Range bin number of the peak s						ot by the
on board surface detection. The	-	r is defined in th	is volume in the se	ction on Precipit	ation Radar,	
Instrument and Scan Geometry						
Bin Ellipsoid	Float SDS	2	nray*nscan	-	-	-
Range bin number of the earth	ellipsoid.					
Bin Clutter Free Bottom	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the lowes			-			ssible,
respectively. The clutter free ce	rtain bin is always	less than or equ		e possible bin nu	umber.	
Bin DID Average	Integer SDS	2	nray*nscan	-	-	-
Mean range bin number of the	DID surface elevat	ion in a 5 km x 5	km box centered o	on the IFOV.		
Bin DID Top	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the maxin		levation in a box	centered on the IF	OV. The first dim	nension is the	box size,
with sizes of 5 km x 5 km and 12	1 km x 11 km.					
Bin DID Bottom	Integer SDS	2	2*nray*nscan	-	-	-
Range bin number of the minim		evation in a box	centered on the IF	OV. The first dim	ension is the	box size,
with sizes of 5 km x 5 km and 12	L km x 11 km.					
Normal Sample	Integer SDS	2	140*nray*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the nor	mal sample. Since	each ray has a di	ifferent size, the ele	ements after the	end of each	ray are
filled with a value of -32767. Ot						-
including an entire scan of miss	ing bins, have the	value of -32734.	The size of each ra	y is specified in I	Ray Header, v	vith an
accuracy of 0.9 dBm.						
Surface Oversample	Integer SDS	2	5*29*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the surf		-			-	
where data is not written due to					an of missing	bins,
have the value of -32734. In the						
Rain Oversample	Integer SDS	2	28*11*nscan	100	-120 ~ -20	dBm
Return power (dBm) of the rain					-	
where data is not written due to			-	-	an of missing	bins,
have the value of -32734. In the			9 and Increment =			

See TRMM 1B21 information (p. 23) for minimum echo flag and bin storm height information.

2A12: TMI Hydrometeor Profile

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Vertical Coverage	Surface – 18 km	Surface – 18 km
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.4 km at 85.5 GHz	5.1 km at 85.5 GHz
	0.5 km from surface to 4 km	0.5 km from surface to 4 km
Vertical Resolution	1.0 km from 4 km to 6 km	1.0 km from 4 km to 6 km
Vertical Resolution	2.0 km from 6 km to 10 km	2.0 km from 6 km to 10 km
	4.0 km from 10 km to 18 km	4.0 km from 10 km to 18 km
	Swath Width: 760 km	Swath Width: 878 km
	Pixels/Scan: 208	Pixels/Scan: 208
Scan Characteristics	Scans/Second (SS): 36.100/60	Scans/Second (SS): 36.100/60
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 2991	Average Scans/Orbit: nscan = 3023
	nscan = SS * SO + 100	nscan = SS * SO + 100
Average File Size	≈ 11 MB	≈ 11 MB

2A12 Data Format Structure: Part 1						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath ge	eometry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each se	can					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric information						
Data Flag	Integer SDS	1	npixel*nscan	-	-	-
Indicates the quality of the data						
Rain Flag	Integer SDS	1	npixel*nscan	-	-	-
Indicates if rain is possible. ≥	0 = rain is possible,	< 0 = no rain				

2A12 Data Format Structure: Part 2						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Surface Flag	Integer SDS	1	npixel*nscan	-	0-3	-
Indicates the type of surface	: 0 = ocean, 1 = la	nd, 2 = coast, 3	= other			
Surface Rain	Float SDS	4	npixel*nscan	-	0 – 3000	mm h ⁻¹
Instantaneous rain rate at th	e surface for each	n pixel.				
Convective Precipitation	Float SDS	4	npixel*nscan	-	0 – 3000	mm h
Instantaneous convective pr	ecipitation rate at	t the surface for	each pixel.			
Confidence	Float SDS	4	npixel*nscan	-	0-300	К
Associated with the surface	rain, and measure	ed as an rms dev	viation in temperatures.			
Cloud Water	Float SDS	4	nlayer*npixel*nscan	see array	0-10	degree
Cloud water content for each	h pixel at 28 layer	s.				
Rain Water	Float SDS	4	nlayer*npixel*nscan	see array	0-10	degree
Rain water content for each	pixel at 28 layers.					
Cloud Ice	Vdata Table	4	nlayer*npixel*nscan	see array	0-10	g m⁻³
Cloud ice content for each p	ixel at 28 layers.					
Snow Water	Vdata Table	4	nlayer*npixel*nscan	see array	0-10	g m ⁻³
Snow water content for each	n pixel at 28 layers	S.				
Graupel Water	Integer SDS	4	nlayer*npixel*nscan	see array	0-10	g m ⁻³
Graupel water content for each pixel at 28 layers.						
Latent Heating	Integer SDS	-256 – 256	nlayer*npixel*nscan	see array	0-10	g m⁻³
Latent heating release for ea	Latent heating release for each pixel at 28 levels.					

TRMM 2A12 Scan Time				
Name Format Descript		Description		
Year	2-byte integer 4-digit year, e.g., 199			
Month	1-byte integer The month of the Year			
Day of Month	Day of Month1-byte integerThe day of			
Hour	1-byte integer	The hour (UTC) of the Day		
Minute	1-byte integer	The minute of the Hour		
Second	nd 1-byte integer The second of the Minute			
Day of Year	2-byte integer	The day of the Year		

TRMM 2A12 Data Flag Specific Viewer						
Value	lue Description					
0	Good data quality	0				
	Channel brightness					
-9	-9 temperature outside valid					
range						
	The neighboring 5 x 5 pixel					
-15	array is incomplete due to edge -15					
or bad data quality						
-21	Surface type invalid	-21				
-23	Date time invalid	-23				
-25	Latitude or longitude invalid	-25				

2A21: Precipitation Radar Surface Cross-Section

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Horizontal Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Scall characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 11 MB	≈ 11 MB

2A21 Data Format Structure						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Other Attribute	5,000	-	-	-	-
Specification of the swath geom	netry					
Scan Time	Vdata Table	5,000	-	-	-	-
Time associated with the scan,	expressed as 8-byte	e float UTC secon	d of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informati	on					
Sigma-zero	Float SDS	4	nray*nscan	-	-50 – 50	dB
Normalized surface cross section	n					
Pat Attenuation	Float SDS	4	nray*nscan	-	-50 – 50	dB
Estimate of positive 2-way integ	grated attenuation	dB when rain is p	present.			
Reliability Flag	Integer SDS	2	nray*nscan	-	-	-
Various reliability information in	n the form of single	digit flags.				
Reliability Factor	Float SDS	4	nray*nscan	-	-10 - 10	-
Ratio of the estimated value of	path attenuation to	standard deviat	ion associated with	the mean value	of the refere	ence
estimate.						
Incident Angle	Float SDS	4	nray*nscan	-	-30 - 30	degree
System Noise Warning Flag indi	System Noise Warning Flag indicates possible contamination of lower window noise by high towers of rain. 1 means possible					
contamination; 0 means no pos	sible contamination	า.				
Rain Flag	Integer SDS	2	nray*nscan	-	_	0 or 1
Rain flag. 0 = no rain, 1 = rain pr	esent					

2A23: Precipitation Radar (PR) Rain Characteristics

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Tomporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 7 MB	≈ 7 MB

	2A23 I	Data Format Stru	cture: Part 1			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry					
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each sca	n					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informa	tion					
Rain Flag	Integer SDS	1	nray*nscan	-	-	-
Identical to minimum echo fla	g of 1C21. 0 = no r	ain; 10, 11, 12, 1	3, 15 = rain possibl	e; 20 = rain cert	ain	
Rain Type	Integer SDS	2	nray*nscan	-	-	-
Rain type flag, -88 is a missing	value for no rain a	and -99 means da	ata are missing. See	e table on next p	age.	

	2A	23 Data Format	Structure: Part 2			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Shallow Rain Flag	Integer SDS	1	nray*nscan	-	-	-
The warm rain flag is set as f	ollows: 10 = mayl	be shallow, isola	ted; 11 = confidence in	shallow, isolate	ed; 20 = may	be
shallow but not isolated; 21	= confidence in sł	nallow but not is	solated; 0 = not shallow	r; < 0 = rain not	certain or m	issing
Status Flag	Integer SDS	1	nray*nscan	-	-	-
Indicates whether the data a	re obtained over	sea or land, and	the confidence in the o	data		
Height of Bright Band	Integer SDS	2	nray*nscan	-	-	-
A positive height of bright ba	and is defined in r	neters above me	ean sea level. Negative	values are defir	ned as: -1111	. = no
bright band, -8888 = no rain,	-9999 = data mis	sing				
Bright Band Intensity	Integer SDS	4	nray*nscan	-	-	-
The maximum value of the b	right band.					
Bright Band Peak Bin	Integer SDS	2	nray*nscan	-	-	-
A positive range bin number	that corresponds	to the peak of t	the bright band.			
Bright Band Boundary	Integer SDS	2	2*nray*nscan	-	-	-
Positive bin number of the b	oundary of the br	right band. The f	first index indicates the	bottom.		
Bright Band Width	Integer SDS	2	nray*nscan	-	-	m
The width of the bright band	l.					
Bright Band Status	Integer SDS	2	nray*nscan	-	-	-
Indicates the status of the br	right band detecti	on. The flag is a	composite of three inte	ernal status flag	s.	
Height of Freezing Level	Integer SDS	2	nray*nscan	-	-	m
A positive height of freezing	level is the height	t of the 0°C isoth	nerm above mean sea le	evel, estimated	from climate	ological
surface temperature data. N	egative numbers	are defined as:	-5555 = error occurred i	in estimation of	height of fr	eezing
level, -8888 = no rain, -9999	= missing data					
Height of Storm	Integer SDS	2	nray*nscan	-	-	m
A positive Height of Storm is	the height of the	storm top abov	e mean sea level in me	ters. A positive	Height of Sto	orm is
given only when rain is prese	ent with a high de	gree of confider	nce in 1C21 (i.e., the Mi	nimum Echo Fla	ag in 1C21 ha	is the
value of 2 [rain certain]). Neg	gative values are	defined as: -111	1 = Height of Storm not	calculated bec	ause rain is r	not
present with a high level of o	onfidence in 1C2	1, -8888 = No ra	in, -9999 = Data missing	B		
Spare	Float SDS	2	nray*nscan	-	-	-
Spare will characterize the w	vidth of the bright	band. Since this	s characterization requi	res much resea	rch, the mea	ning is
not disclosed.						

		TRMM 2A23 Rain Type Flag
Value	Meaning	Conditions
100	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_stra;
110	Stratiform certain	When R_type_V = T_stra; (BB exists) and R_type_H = T_others;
120	Probably stratiform	When R_type_V = T_others; and R_type_H = T_stra;
130	Maybe stratiform	When R_type_V = T_stra; (BB detection certain) and R_type_H = T_conv;
140	Maybe stratiform or maybe transition or something else	When R_type_V = T_others; (BB hardly expected) and R_type_H = T_stra
152	Maybe stratiform	Shallow isolated (type of warm rain) is detected. When R_type_V = T_others; R_type_H = T_stra; and shallowRain = 20 or 21;
160	Maybe stratiform, rain hardly expected near surface	BB may exist but is not detected when R_type_V = T_others; R_type_H = T_stra;
170	Maybe stratiform, rain hardly expected near surface	BB hardly expected. Maybe cloud only. When R_type_V = T_others; R_type_H = T_stra;
200	Convective certain	When R_type_V = T_conv; (no BB) and R_type_H = T_conv;
210	Convective certain	When R_type_V = T_others; and R_type_H = T_conv;
220	Convective certain	When R_type_V = T_conv; and R_type_H = T_others;
230	Probably convective	When R_type_V = T_conv; (BB exists) and R_type_H = T_conv;
240	Maybe convective	When R_type_V = T_conv; and R_type_H = T_stra;
251	Convective	Shallow isolated is detected. When R_type_V = T_conv, R_type_H = T_conv and shallowRain = 10 or 11;
252	Convective	Shallow rain (non-isolated) is detected. When R_type_V = T_conv, R_type_H = T_conv and shallowRain = 20 or 21;
261	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_others; and shallowRain = 10 or 11;
262	Convective	Shallow rain (non-isolated) is detected.When R_type_V[i] = T_conv, R_type_H[i] = T_others; and shallowRain[i] = 20 or 21;
271	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 10 or 11;
272	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_conv; and shallowRain = 20 or 21;
281	Convective	Shallow isolated is detected. When R_type_V = T_conv; R_type_H = T_stra; and shallowRain = 10 or 11;
282	Convective	Shallow rain (non-isolated) is detected.When R_type_V[i] = T_conv, R_type_H[i] = T_stra; and shallowRain[i] = 20 or 21;
291	Convective	Shallow isolated is detected. When R_type_V = T_others; R_type_H = T_stra; and shallowRain = 10 or 11;
300	Others	When R_type_V = T_others; and R_type_H = T_others;
312	Others	Shallow rain (non-isolated) is detected. When R_type_V = T_others, R_type_H = T_others; and shallowRain = 20 or 21;
313	Others	If sidelobe clutter were not rejected, shallow isolated would be detected When R_type_V = T_others, R_type_H = T_others; and shallowRain = 20 or 21;

where R_type_V: rain type classified by the V-profile method; R_type_H: rain type classified by the H-pattern method.

The above assignment of numbers has the following meaning:

(merged) Rain Type / 100 = 1: stratiform; 2: convective; 3: others.

(merged) Rain Type Flag % 100 = sub-category

(merged) Rain Type Flag % 10 = 0: usual; 1: shallow isolated; 2: shallow non-isolated; 3: sidelobe clutter only where Rain Type Flag % 10 means MOD.

	TRMM 2A23 Status Flag	
Value	Meaning	Where
0	good	over ocean
10	BB detection may be good	over ocean
20	R-type classification may be good (BB detection is good or BB does not exist)	over ocean
30	Both BB detection and R-type classification may be good	over ocean
50	not good (because of warnings)	over ocean
100	bad (possible data corruption)	over ocean
1	good	over land
11	BB detection may be good	over land
21	R-type classification may be good (BB detection is good or BB does not exist)	over land
31	Both BB detection and R-type classification may be good	over land
51	not good (because of warnings)	over land
101	bad (possible data corruption)	over land
2	good	over coastline
12	BB detection may be good	over coastline
22	R-type classification may be good (BB detection is good or BB does not exist)	over coastline
32	Both BB detection and R-type classification may be good	over coastline
52	not good (because of warnings)	over coastline
102	bad (possible data corruption)	over coastline
4	good	over inland lake
14	BB detection may be good	over inland lake
24	R-type classification may be good (BB detection is good or BB does not exist)	over inland lake
34	Both BB detection and R-type classification may be good	over inland lake
54	not good (because of warnings)	over inland lake
104	bad (possible data corruption)	over inland lake
9	may be good	land/sea unknown
19	BB detection may be good	land/sea unknown
29	R-type classification may be good (BB detection is good or BB does not exist)	land/sea unknown
39	Both BB detection and R-type classification may be good	land/sea unknown
59	not good (because of warnings)	land/sea unknown
109	bad (possible data corruption)	land/sea unknown

When the status flag is "no rain" or "data missing", status flag contains -88 for no rain and -99 for missing data. Assignment of the above numbers are based on the following rules:

(Status/10) % 10	Meaning
0	good, may be good when status < 100 and not good when status \ge 100
1	BB detection not so confident
2	R-type classification not so confident (but BB detection is good or doesn't exist)
3	BB detection and R-type classification both not confident
5	Overall quality of the processed data is not good
Status % 10	
0	over ocean
1	over land
2	over coastline
4	over inland lake
9	land/sea unknown

In other words, if the Status Flag is \geq 100, the data are untrustworthy; between 10 and 100 then the data are not confident, equal to 9 then the data may be good; and between 0 and 9 then the data are good.

2A25: Precipitation Radar (PR) Rainfall Rate and Profile

	Pre-boost (before 7 Aug 2001)	Post-boost (after 24 Aug 2001)
Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24
Temporal Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08
Goographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day
Spatial Resolution	4.3 km	5.0 km
	Swath Width: 215 km	Swath Width: 247 km
	Rays/Scan: nray = 49	Rays/Scan: nray = 49
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250
	nscan = SS*SO	nscan = SS*SO
Average File Size	≈ 16 MB compressed, 253 MB original	≈ 16 MB compressed, 256 MB original

	2A25 [Data Format Stru	cture: Part 1			
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Clutter Flag	Vdata Table	4	49	-	-	-
Mainlobe Clutter Edge and Sid	elobe Clutter Rang	ge				
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geo	metry.					
Scan Time	Vdata Table	8	nscan	-	-	-
Time associated with the scan	, expressed as 8-b	yte float UTC sec	ond of the day.			
Latitude	Float SDS	4	nray*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	nray*nscan	-	-	degree
Longitude information						
scLocalZenith	Float SDS	4	nray*nscan	-	-	degree
Spacecraft local zenith angle.						
Scan Status	Vdata Table	15	nscan	-	-	-
Status of each scan.						
Navigation	Vdata Table	88	nscan	-	-	-
Spacecraft geocentric informa	tion.					
Rain Rate	Integer SDS	2	80*nray*nscan	100	0.0 ~ 300	mm/h
Estimate of rain rate at the rad 889) means ground clutter.	ar range gates fron	10 to 20 km alon	g the slant range. A	A value of -88.88	3 mm/hr (s	tored as -
Reliability	Integer SDS	1	80*nray*nscan	-	0~255	-
For estimated rain rates at the	radar range gates f	rom 0 to 20 km.				

	2/	25 Data Format	Structure: Part 2			<u> </u>
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Corrected Z-factor	Integer SDS	2	80*nray*nscan	100	0~80	dBZ
Attenuation corrected reflect						
reflectivity less than 0.0 dBZ		Z. A value of -88	.88 dB (stored as -8888) is a ground (clutter flag, -999	9 is for
missing data in reflectivity p						
Parameter Node	Integer SDS	2	5*nray*nscan	-	0~79	-
Range bin numbers of the no				ters are given	(see below). Th	e value
of the parameters between	the nodes are lin	early interpolate	ed.			
Attenuation Parameter α	Float SDS	4	5*nray*nscan	-	0.00010~	_
					0.00200	
It relates the attenuation co	efficient, k (dB/kı	m) to the Z-facto	r: k = α^{β} . α is computed	d at ncell2(5) ı	radar range gate	s for
each ray.						
Attenuation Parameter ß	Float SDS	4	nray*nscan	-	0.5 ~ 2.0	-
It relates the attenuation co	efficient, k (dB/kı	m) to the Z-facto	r: k = $\alpha^* Z^\beta$. β is compute	ted for each r	•	
Z-R Parameter a	Float SDS	4	5*nray*nscan	-	0.0050 ~	_
					0.2000	
Parameter a for Z-R relation				-	to the freezing le	evel, the
non-uniformity parameter (a		ion factor (ε) for		technique.		
Z-R Parameter b	Float SDS	4	5*nray*nscan	-	0.5 ~ 1.0	-
Parameter a for Z-R relation				-	to the freezing le	evel, th
non-uniformity parameter (a	ζ) and the correct	ion factor (ε) for	the surface reference	technique.		
Precipitation Water	Float SDS	4	5*nray*nscan	-	_	_
Parameter A			o			
Parameter A in the M = AZ^I	B relationship.					
Precipitation Water	Float SDS	4	5*nray*nscan	-	-	-
Parameter B			,			
Parameter B in the M = AZ^I	B relationship.					
Precipitation Water	Float SDS	4	2*nray*nscan	-	-	-
Vertically integrated value o				-		x is the
Vertically integrated value o precipitation liquid water co	ntent from the fr	eezing height to	the actual surface. The	e second inde	x is the sum of	
Vertically integrated value o precipitation liquid water co precipitation ice content fro	ntent from the fr	eezing height to	the actual surface. The	e second inde	x is the sum of	
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0.	ntent from the fr m the top of the	eezing height to storm to the free	the actual surface. The ezing height. Units are p	e second inde	x is the sum of n2) and it ranges	from
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z	ntent from the fr m the top of the Float SDS	eezing height to storm to the free 4	the actual surface. The	e second inde	x is the sum of n2) and it ranges	
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure	ntent from the fr m the top of the Float SDS d reflectivity fact	eezing height to storm to the free 4 or at each IFOV.	the actual surface. The ezing height. Units are p nray*nscan	e second inde	x is the sum of n2) and it ranges	from
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag	ntent from the fr m the top of the Float SDS d reflectivity fact Integer SDS	eezing height to storm to the free 4 or at each IFOV. 2	the actual surface. The ezing height. Units are a nray*nscan nray*nscan	e second inde: gkm/m3(kg/m - -	x is the sum of n2) and it ranges 0 ~ 100 -	dBZ
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no	ntent from the fr m the top of the Float SDS d reflectivity fact Integer SDS p rain status and	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass	the actual surface. The ezing height. Units are a nray*nscan nray*nscan umed in rain rate retrie	e second inde: gkm/m3(kg/n - - eval. The defa	x is the sum of n2) and it ranges 0 ~ 100 -	dBZ
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b	Float SDS d reflectivity fact Integer SDS o rain status and bit (i.e., if bit i=1 a	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0,	the actual surface. The ezing height. Units are a nray*nscan nray*nscan umed in rain rate retrie , the unsigned integer v	e second inde: gkm/m3(kg/n - - eval. The defa	x is the sum of n2) and it ranges 0 ~ 100 - ult value is 0 (nc	dBZ
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b Range Bin Numbers	Float SDS d reflectivity fact Integer SDS o rain status and it (i.e., if bit i=1 a Integer SDS	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0, 2	the actual surface. The ezing height. Units are a nray*nscan nray*nscan umed in rain rate retrie , the unsigned integer 5*nray*nscan	e second inde: gkm/m3(kg/m - - eval. The defa value is 2 ⁱ).	x is the sum of n2) and it ranges 0 ~ 100 - ult value is 0 (nc 0 ~ 79	dBZ - o rain). -
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b Range Bin Numbers Range Bin Number of variou	Float SDS d reflectivity fact Integer SDS o rain status and it (i.e., if bit i=1 a Integer SDS s quantities for e	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0, 2 ach ray in every	the actual surface. The ezing height. Units are a nray*nscan umed in rain rate retrie , the unsigned integer 5*nray*nscan scan. The Range Bin Nu	e second inde gkm/m3(kg/m - - eval. The defa value is 2 ⁱ). - -	x is the sum of 12) and it ranges $0 \sim 100$ ult value is 0 (no $0 \sim 79$ algorithm are d	dBZ - o rain). - ifferen
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b Range Bin Numbers Range Bin Number of variou from the NASDA definition o	Float SDS d reflectivity fact Integer SDS o rain status and bit (i.e., if bit i=1 a Integer SDS s quantities for e of Range Bin Num	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0, 2 ach ray in every ber described in	the actual surface. The ezing height. Units are a nray*nscan umed in rain rate retrie , the unsigned integer of 5*nray*nscan scan. The Range Bin Nu the ICS, Volume 3. The	e second inde: gkm/m3(kg/m - eval. The defa value is 2 ⁱ). - umbers in this e Range Bin Ni	x is the sum of 12) and it ranges $0 \sim 100$ ult value is 0 (no $0 \sim 79$ algorithm are d	dBZ - o rain). - ifferen
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b Range Bin Numbers Range Bin Number of variou from the NASDA definition of	Float SDS d reflectivity fact Integer SDS o rain status and bit (i.e., if bit i=1 a Integer SDS s quantities for e of Range Bin Num	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0, 2 ach ray in every ber described in	the actual surface. The ezing height. Units are a nray*nscan umed in rain rate retrie , the unsigned integer of 5*nray*nscan scan. The Range Bin Nu the ICS, Volume 3. The	e second inde: gkm/m3(kg/m - eval. The defa value is 2 ⁱ). - umbers in this e Range Bin Ni	x is the sum of 12) and it ranges $0 \sim 100$ ult value is 0 (no $0 \sim 79$ algorithm are d umbers in the al	dBZ - o rain). - ifferen
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b Range Bin Numbers Range Bin Number of variou from the NASDA definition of	Float SDS d reflectivity fact Integer SDS o rain status and bit (i.e., if bit i=1 a Integer SDS s quantities for e of Range Bin Num	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0, 2 ach ray in every ber described in	the actual surface. The ezing height. Units are a nray*nscan umed in rain rate retrie , the unsigned integer of 5*nray*nscan scan. The Range Bin Nu the ICS, Volume 3. The	e second inde: gkm/m3(kg/m - eval. The defa value is 2 ⁱ). - umbers in this e Range Bin Ni	x is the sum of 12) and it ranges $0 \sim 100$ - ult value is 0 (no $0 \sim 79$ algorithm are d umbers in the al (1)0.0 ~	dBZ - o rain). - ifferen
Parameter Sum Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b Range Bin Numbers Range Bin Numbers Range Bin Number of variou from the NASDA definition of range from 0 to 79 and have Averaged Rain Rate	Float SDS d reflectivity fact Integer SDS o rain status and bit (i.e., if bit i=1 a Integer SDS s quantities for e of Range Bin Num	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0, 2 ach ray in every ber described in	the actual surface. The ezing height. Units are a nray*nscan umed in rain rate retrie , the unsigned integer of 5*nray*nscan scan. The Range Bin Nu the ICS, Volume 3. The	e second inde: gkm/m3(kg/m - eval. The defa value is 2 ⁱ). - umbers in this e Range Bin Ni	x is the sum of 12) and it ranges $0 \sim 100$ - ult value is 0 (no $0 \sim 79$ algorithm are d umbers in the al (1)0.0 ~ 3000.0	dBZ - o rain). - ifferent
Vertically integrated value o precipitation liquid water co precipitation ice content fro 0.0 to 50.0. Maximum Z Maximum value of measure Rain Flag Rain Flag indicates rain or no Bit 0 is the least significant b Range Bin Numbers Range Bin Number of variou from the NASDA definition of range from 0 to 79 and have	Float SDS d reflectivity fact Integer SDS o rain status and bit (i.e., if bit i=1 a Integer SDS s quantities for e of Range Bin Num e an interval of 25	eezing height to storm to the free 4 or at each IFOV. 2 the rain type ass and other bits =0, 2 ach ray in every ber described in 0m. The earth el	the actual surface. The ezing height. Units are a nray*nscan umed in rain rate retrie , the unsigned integer v 5*nray*nscan scan. The Range Bin Nu the ICS, Volume 3. The llipsoid is defined as ra	e second inde: gkm/m3(kg/m - eval. The defa value is 2 ⁱ). - umbers in this e Range Bin Ni	x is the sum of 12) and it ranges $0 \sim 100$ - ult value is 0 (no $0 \sim 79$ algorithm are d umbers in the al (1)0.0 ~ 3000.0	dBZ - o rain). - ifferen gorithn

Nama			at Structure: Part 3		Γ	1
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
Precipitable Water Sum	Float SDS	4	2*nray*nscan	-	0 – 50	g km m ^{-a}
Vertically integrated value o	f sum precipitati	on water conten	t calculated from Ze a	it each range b	oin. The first inc	lex is the
precipitation liquid water co	ntent from the f	reezing height to	the actual surface. T	he second ind	ex is the sum of	-
precipitation ice content fro	m the top of the	storm to the fre	ezing height.			
Method Flag	Integer SDS	2	nray*nscan	-	-	-
Method Flag indicates which	n method is used	to derive the rai	in rate. The default va	lue is 0 (includ	ding no rain cas	e). Bit 0 is
the least significant bit (i.e.,					-	
Epsilon	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	-
Correction factor for the sur		•	indy notan		0.0 100.0	
Epsilon_0	Float SDS	4	nray*nscan	-	0.0 ~ 100.0	-
The adjustment parameter of			-	1 algorithm)	0.0 100.0	
Zeta	Float SDS	4	2*nray*nscan	-	0.0 ~ 100.0	-
Roughly represents the rain		•		ods	0.0 100.0	
Zeta_mn	Float SDS		2*nray*nscan	-	0.0 ~ 100.0	_
Average of zeta in the vicinit		•		- 1 three IEOV(s)		- using two
methods.	ly of cach beall			a diree irovs)		using two
Zeta_sd	Float SDS	4	2*nray*nscan		0.0 ~ 100.0	
Standard deviation of zeta ir		-	-	and three IEO		- tod using
two methods.	i the vicinity of e	ach beam positio	on (using three scans		vsj. it is calcula	teu using
Xi	Float SDS	4	2*nray*nscan		0.0 ~ 99.0	
Normalized standard deviati			-	- on small valu		
It is calculated using two me		a_su/zeta_mm.		S OIT SITIAIT VAIU		s set to 99.
NUBF Correction Factor	Float SDS	4	3*nray*nscan	_	1~10	_
The Non-Uniform Beam Filli		-		ofloctivity and		lculations
It's range is between 1.0 and				chectivity and		
Quality Flag	Integer SDS	2				
Quality has	integer JDJ		nrav*nscan	_	0~32767	_
See note #1 helow	-	2	nray*nscan	-	0~32767	-
See note #1 below.	Eloat SDS		·	-		- mm hr-1
Near Surface Rain	Float SDS	4	nray*nscan	-	0 ~ 32767 0 ~ 3000	- mm hr ⁻¹
Near Surface Rain Rainfall rate near the surface	e. A value of -99	4 99 mm hr ⁻¹ is a n	nray*nscan nissing flag.	-	0 ~ 3000	
Near Surface Rain Rainfall rate near the surface Near Surface Z	e. A value of -99. Float SDS	4 99 mm hr ⁻¹ is a n 4	nray*nscan nissing flag. nray*nscan	-		- mm hr ⁻¹ dBZ
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface	e. A value of -99. Float SDS . A value of -99.9	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin	nray*nscan nissing flag. nray*nscan ng flag.	-	0 ~ 3000 0.0 ~ 100.0	dBZ
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain	e. A value of -99 Float SDS . A value of -99. Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan	-	0 ~ 3000	
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface	e. A value of -99 Float SDS . A value of -99.9 Float SDS . A value of -99.9	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag.	-	0 ~ 3000 0.0 ~ 100.0	dBZ
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA	e. A value of -99. Float SDS . A value of -99.9 Float SDS . A value of -99.9 Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan	- - -	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000	dBZ mm hr ⁻¹
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation	e. A value of -99. Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way]	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000	dBZ mm hr ⁻¹
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surface	e. A value of -99 Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (3	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000	dBZ mm hr ⁻¹ - e differend
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain	e. A value of -99. Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000	dBZ mm hr ⁻¹
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error in Near Surface Rain Ra	e. A value of -99. Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS ate.	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (is 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr nray*nscan	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000 - estimate (2) Th -	dBZ mm hr ⁻¹ - e differend dB
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error In Near Surface Rain Ra Error Z	e. A value of -99. Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (3	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000	dBZ mm hr ⁻¹ - e differend
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error in Near Surface Rain Ra Error Z Error in Near Surface Z.	e. A value of -99 Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS ate. Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (3 4 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr nray*nscan nray*nscan	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000 - estimate (2) Th -	dBZ mm hr ⁻¹ - e differend dB
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error in Near Surface Rain Ra Error Z Error in Near Surface Z. Spares	e. A value of -99 Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS ate. Float SDS Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (is 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr nray*nscan	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000 - estimate (2) Th -	dBZ mm hr ⁻¹ - e differend dB
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error In Near Surface Rain Ra Error In Near Surface Z. Spares Contents and ranges are not	e. A value of -99 Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS ate. Float SDS Float SDS t public.	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (i 4 4 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr nray*nscan nray*nscan 2*nray*nscan	-	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000 - estimate (2) Th -	dBZ mm hr ⁻¹ e differend dB dBZ -
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error Rain Error in Near Surface Rain Ra Error in Near Surface Z. Spares Contents and ranges are not Height of Freezing Level	e. A value of -99. Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS ate. Float SDS Float SDS Float SDS t public. Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (i 4 4 4 4	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr nray*nscan nray*nscan 2*nray*nscan nray*nscan	om 2A21 - - - -	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000 - estimate (2) Th - 0.0 ~ 100.0 - -	dBZ mm hr ⁻¹ e differend dB dBZ - m
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error Rain Error In Near Surface Rain Ra Error J Error in Near Surface Z. Spares Contents and ranges are not Height of Freezing Level A positive Height of Freezing	e. A value of -99 Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS ate. Float SDS Float SDS t public. Float SDS g Level is the heighted Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (is 4 4 4 4 4 ght of the 0°C iso	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr nray*nscan nray*nscan 2*nray*nscan nray*nscan therm above mean se	om 2A21 - - - -	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000 - estimate (2) Th - 0.0 ~ 100.0 - -	dBZ mm hr ⁻¹ e differend dB dBZ - m
Near Surface Rain Rainfall rate near the surface Near Surface Z Reflectivity near the surface Estimated Surface Rain Reflectivity near the surface PIA Path Integrated Attenuation between the PIA at the surfa Error Rain Error In Near Surface Rain Ra Error In Near Surface Z. Spares Contents and ranges are not	e. A value of -99 Float SDS A value of -99.9 Float SDS A value of -99.9 Float SDS (PIA)[two-way] ace and near sur Float SDS ate. Float SDS Float SDS t public. Float SDS g Level is the heighted Float SDS	4 99 mm hr ⁻¹ is a n 4 99 dBZ is a missin 4 99 mm hr ⁻¹ is a m 4 estimates for thr face range bins (is 4 4 4 4 4 ght of the 0°C iso	nray*nscan nissing flag. nray*nscan ng flag. nray*nscan issing flag. 3nray*nscan ree cases: (1) The fina 3) The PIA estimate fr nray*nscan nray*nscan 2*nray*nscan nray*nscan therm above mean se	om 2A21 - - - -	0 ~ 3000 0.0 ~ 100.0 0 ~ 3000 - estimate (2) Th - 0.0 ~ 100.0 - -	dBZ mm hr ⁻¹ e differend dB dBZ - m

Note #1: Quality Fla	Note #1: Quality Flag Description			
	The default value is 0 (normal). Bit 0 is the least significant bit (i.e., if bit i =1 and other			
	d integer value is 2**i). The following meanings are assigned to			
each bit in the 16-bi	t integer if the bit = 1.			
Correction Factor	Meaning			
0	normal			
1	unusual situation in rain average			
2	NSD of zeta (xi) calculated from less than 6 points			
4	NSD of PIA calculated from less than 6 points			
8	NUBF for Z-R below lower bound			
16	NUBF for PIA above upper bound			
32	epsilon not reliable, epsi_sig less than or equal to 0.0			
64	2A21 input data not reliable			
128	2A23 input data not reliable			
256	range bin error			
512	sidelobe clutter removal			
1024	24 probability=0 for all tau			
2048	pia_surf_ex less than or equal to 0.0			
4096	const Z is invalid			
8192	reliabFactor in 2A21 is NaN			
16384	data missing			

TRMM PR 2A25 Clutter Flags			
Name	Format Description		
		Absolute value of the difference in Range bin Numbers between	
Mainlobe Clutter Edge	1-byte integer	the detected surface and the edge of the clutter from the	
		mainlobe.	
Sidelobe Clutter Range	3 x 1-byte integer	Absolute value of the difference in Range Bin Numbers between the detected surface and the clutter position from the sidelobe. A zero means no clutter indicated in this field since less than 3 bins contained significant clutter.	

	TRMM 2A25 Reliability		Bit	Meani
Bit	Meaning if bit=1		0	rain po
0	rain possible		1	rain ce
1	rain certain		2	Zeta^
2	bright band		2	(PIA) la
3	large attenuation		3	large a
4	weak return (Zm < 20 dBZ)		4	stratifo
5	estimated Z < 0 dBZ		5	convec
6	main-lobe clutter or below surface		6	bright
0	main-lobe clutter of below surface		7	warm

TRMM 2A25 Rain Flag			
Bit	Meaning if bit=1		
0	rain possible		
1	rain certain		
2	Zeta [^] Beta > 0.5 [Path Integrated Attenuation		
2	(PIA) larger than 3 dB]		
3	large attenuation (PIA larger than 10 dB)		
4	stratiform		
5	convective		
6	bright band exists		
7	warm rain		
8	rain bottom above 2 km		
9	rain bottom above 4 km		
10 - 13	not used		
14	data missing between rain top and bottom		
15	not used		

	TRMM 2A25 Method Flag			
	If all bits 0: no rain. Otherwise:			
Bit	Meaning when set (except bit 1)			
1	0: over ocean			
1	1: over land			
2	over coast, river, etc.			
3	OIA from constant-Z-near-surface assumption			
4	spatial reference			
5	temporal reference			
6	global reference			
7	hybrid reference			
8	good to take statistics of epsilon			
9	HB method used, SRT totally ignored			
10	very large pia_srt for given zeta			
11	very small pia_srt for given zeta			
12	no ZR adjustment by epsilon			
13	no NUBF correction because NSD unreliable			
14	surface attenuation > 60 dB			
15	data partly missing between rain top and bottom			

2B31: Combined Rainfall Profile

Temporal Coverage	Start Date: 1997-12-08	Start Date: 2001-08-24	
Temporar Coverage	Stop Date: 2001-08-07	Stop Date: 2015-04-08	
Geographic Coverage	Latitude: 38°S – 38°N	Latitude: 38°S – 38°N	
Geographic Coverage	Longitude: 180°W – 180°E	Longitude: 180°W – 180°E	
Temporal Resolution	≈ 91.5 min/orbit = ≈ 16 orbits/day	≈ 92.5 min/orbit = ≈ 16 orbits/day	
Horizontal Resolution	4.3 km	5.0 km	
	Swath Width: 215 km	Swath Width: 247 km	
	Rays/Scan: nray = 49	Rays/Scan: nray = 49	
Scan Characteristics	Scans/Second (SS): 1/0.6	Scans/Second (SS): 1/0.6	
Scall Characteristics	Seconds/Orbit (SO): 5490	Seconds/Orbit (SO): 5550	
	Average Scans/Orbit: nscan = 9150	Average Scans/Orbit: nscan = 9250	
	nscan = SS*SO	nscan = SS*SO	
Average File Size	≈ 11 MB compressed	≈ 11 MB compressed	

	2B31 Data Format Structure: Part 1					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	- (# 01 records)	_	-	-
ECS core metadata		10,000				
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
Swath Structure	Char Attribute	5,000	-	-	-	-
Specification of the swath geon		,				
Scan Time	Vdata Table	9	nscan	-	-	-
Time associated with each scar	I					
Latitude	Float SDS	4	208*nscan	-	-	degree
Latitude information						
Longitude	Float SDS	4	208*nscan	-	-	degree
Longitude information						
Scan Status	Vdata Table	21	nscan	-	-	-
Status of each scan						
Navigation	Vdata Table	88	nscan	-	-	-
Longitude information						
D-hat	Integer SDS	2	nray x nscan	100	0.7 – 1.8	mm**
Correlation-corrected mass-we	ighted mean drop	diameter.				
Sigma D-hat	Integer SDS	2	nray x nscan	100	0.0 – 2.0	mm**
RMS uncertainty in D-Hat. The	accuracy is 0.01 "n	ormalized" mm.				
Graupel	Integer SDS	2	nradarrange x nray x nscan	1000	0-10	g m ⁻³
graupel is defined as frozen hyd	drometeors with a	density of 600 K	g m ⁻³			
snow	Integer SDS	2	nradarrange x nray x nscan	1000	0-10	dBm
snow is defined as frozen hydro	proteors with a de	ensity of 100 Kg r				
prSurf	Integer SDS	1	nray*nscan	-	0 – 500	mm hr ⁻¹
The surface precipitation rate (liquid plus solid). T	he accuracy is 0.	.1 mm hr ⁻¹ .			
** indicates normalized units.	A normalized unit,	Y, is defined as Y	' = X * R ^{0.37} R such th	nat Y is a norma	lized version o	of X. R
represents rain rate.						
The dimension <i>nradarrange</i> rep	presents the numb	er of radar range	e gates, up to abou	t 20 km from th	e earth ellipso	oid. The
gates range from 0 to 79 and ea	ach gate is 250 m a	apart.				

2B31 Data Format Structure: Part 2						
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
R-hat	Integer SDS	2	nradarrange * nray*nscan	10	0 – 500	mm hr ⁻¹
Instantaneous rain rate at the ra	adar range gates. ⁻	The accuracy is 0	.1 mm hr ⁻¹ .			
Sigma R-hat	Integer SDS	2	nradarrange * nray*nscan	10	-125 – 125	mm hr-1
RMS uncertainty in the R-hat es possible" detection by the rada reserved for cases where the RI	r rather than the "	rain-certain" ass	ociated with positiv	ve values). The v	alues -125 an	
RR-Surf Surface rain rate.	Float SDS	4	nray*nscan	-	0 – 500	mm hr ⁻¹
Sigma RR-Surf	Integer SDS	2	nray*nscan	100	-125 – 125	mm hr ⁻¹
RMS uncertainty in RR-Surf. (The negative sign indicating estimates based on a "rain-possible" detection by the radar rather than the "rain-certain" associated with positive values). The values -125 and 125 are reserved for cases where the RMS uncertainty could not be accurately estimated. The accuracy is 0.5 mm/hr.						
latentHeadHH	Float SDS	4	nlayer*nray *nscan	-	-	K hr-1
The "hydrometeor heating" cale archival temperature/ pressure is assumed to be liquid. Heating	/humidity soundin	gs which depend		-	-	-
spare	Float SDS	4	4*nray*nscan	-	-	-
Contents and ranges are not pu		-				

TRMM 2B31 Geolocation

Geolocation is the earth location of the center of the IFOV at the altitude of the earth ellipsoid. The first dimension is latitude and longitude, in that order. The next dimensions are numbers of pixels and scans. Values are represented as floating point decimal degrees. Off-earth is represented as -9999.9. Latitude is positive north, negative south. Longitude is positive east, negative west. A point on the 180° meridian is assigned to the western hemisphere.

TRMM 2B31 D-hat Description

D-hat is the correlation-corrected mass-weighted mean drop diameter. The accuracy is 0.01 "normalized" mm (the value 0 indicates no rain or bad data). The average value of dHat is around 1.1 "normalized" mm, a unit which comes from the fact that dHat is related to the true mass-weighted mean drop diameter D* mm by the formula dHat = D*rHat-0.155 (with rHat in mm/hr).

Layers and lower and upper boundaries used for calculating latent heat (specified as height above earth ellipsoid)

Layer 1: 16 km – 18 km	
Layer 2: 14 km – 16 km Layer 3: 12 km – 14 km Layer 4: 10 km – 12 km Layer 5: 8 km – 10 km	Layer 10: 3 km – 4 km Layer 11: 2 km – 3 km Layer 12: 1 km – 2 km Layer 13: 0 km – 1 km
Layer 6: 7 km – 8 km	
Layer 7: 6 km – 7 km	
Layer 8: 5 km – 6 km	
Layer 9: 4 km – 5 km	

3A11: Monthly Oceanic Rainfall

Temporal Coverage	Start Date: 1997-12-01 Stop Date: 2015-03-31
Geographic Coverage	Latitude: 40°S – 40°N Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5°; nlat = 16, nlon = 72
Average File Size	≈ 23 KB compressed

	3A11 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Scaled by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
GridStructure	Char Attribute	5,000	-	-	-	-
GridStructure gives the specification	ation of the geome	etry of the grids.				
Monthly Rainfall	Float SDS	4	nlat*nlon	-	0 – 3000	mm
The Monthly Rainfall is the surfa	ace rainfall over or	eans in 5° x 5° b	oxes from 40°N x 40	D°S.		
Number of Samples	Integer SDS	4	nlat*nlon	-	0 – 500,000	-
The number of samples over the	e oceans in each 5	° x 5° box for one	e month.			
Chi Square Fit	Integer SDS	4	nlat*nlon	-	$1 - 10^{9}$	0
Indicates how well the histogra	m of brightness te	mperatures fits t	he lognormal distri	bution function.		
Freezing Level	Float SDS	4	nlat*nlon	-	0-6	km
Estimated height of the 0°C isot	herm.					
Т_0	Float SDS	4	nlat*nlon	-	160- 180	К
The mean of non-raining bright	ness temperatures					
r_0	Float SDS	4	nlat*nlon	-	0 – 15	mm h⁻¹
_ Logarithmic mean rain rate.						
Sigma_r	Float SDS	4	nlat*nlon	-	0-1	mm h ⁻¹
Standard deviation of the logari	thmic rain rate.					
Probability of Rain	Float SDS	4	nlat*nlon	-	0-1	-
Probability of rain in each 5° x 5						
Quality Indicators 1 - 3	Integer SDS	2	nlat*nlon	-	-	
		-	mat mon			
Spare	Integer SDS	2	nlat*nlon	-	-	
Note that this product only inclu	udes data over oce	ans. Data over la	and are assigned th	e missing value	of -9999.	

3A12: Mean 2A12 Profile and Surface Rainfall

Temporal Coverage	Start Date: 1997-12-01 Stop Date: 2015-03-31
Geographic Coverage	Latitude: 40°S – 40°N Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.5° x 0.5°; nlat = 160, nlon = 720
Average File Size	≈ 56 MB compressed

	34	12 Data Format	Structure			
Name	Turne	Record Size	Dim Size	Scaled	Danga	Unit
Name	Туре	(bytes)	(# of records)	by	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-	-
ECS core metadata						
PS Metadata	Char Attribute	10,000	-	-	-	-
Product specific metadata						
GridStructure	Char Attribute	5,000	-	-	-	-
GridStructure gives the specific	ation of the geom	etry of the grids.				
SurfaceRain	Float SDS	4	nlat*nlon	-	0 – 3000	mm h⁻¹
Monthly mean of the instantar	eous rain rate for	each grid box.				
SurfacePrecipitation	Float SDS	4	nlat*nlon	-	0 – 3000	mm h⁻¹
Monthly mean of the instantar	eous precipitatior	rate at the surfa	ace for each grid box.			
ConvectPrecipitation	Float SDS	4	nlat*nlon	-	0 – 3000	mm h⁻¹
Monthly mean of the instantar	eous convective r	ain rate at the su	Irface for each grid be	ox.		
CldWater	Float SDS	4	nlat*nlon*nlayer	-	0 - 10	g m⁻³
Monthly mean cloud liquid wat	ter content for eac	h grid box.				
RainWater	Float SDS	4	nlat*nlon*nlayer	-	0-10	g m⁻³
Monthly mean precipitation wa	ater content for ea	ich grid box.				
CldIce	Float SDS	4	nlat*nlon*nlayer	-	0 - 10	g m⁻³
Monthly mean cloud ice water	content for each g	grid box.				
Snow	Float SDS	4	nlat*nlon*nlayer	-	0-10	g m⁻³
Monthly mean snow liquid wat	er content for eac	h grid box.				
Graupel	Float SDS	4	nlat*nlon*nlayer	-	0 - 10	g m⁻³
Monthly mean graupel liquid w	ater content for e	ach grid box.				
LatentHeat	Float SDS	4	nlat*nlon*nlevel	-	-256 – 256	K h⁻¹
Monthly mean latent heating r	elease.					
NpixTotal	Integer SDS	4	nlat*nlon	-	0 – 10,000	-
Monthly number of pixels with	pixelStatus equal	to zero for each	grid, used to remove	sea ice.		
NpixPrecipitation	Integer SDS	4	nlat*nlon	-	0 - 10,000	-
Monthly number of pixels with	surfacePrecipitati	on greater than :	zero for each grid bo	k. Over the	oceans, each p	oixel is also
required to have a probabilityC)fPrecipitation gre	ater than 50%.				
Notes: nlevel represents the nu	umber of latent he	ating levels (28)	per grid box and <i>nlay</i>	er represe	nts the number	r of
profiling layers per grid box.						

3A25: Spaceborne Radar Rainfall

Temporal Coverage	Start Date: 1997-12-01 Stop Date: 2015-03-31	
Geographic Coverage	Latitude: 40°S – 40°N Longitude: 180°W – 180°E	
Temporal Resolution	Monthly	
Horizontal Resolution	5° x 5° and 0.5° x 0.5°	
Average File Size	≈ 38 MB compressed	

3A25 Data Structure: Part 1							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit		
rzStratPix2	Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-		
The number of R-Z coefficient pi	xel counts cor	ditioned on stra	atiform rain for near-surfa	ace and 2km heigh	ts over 0.5° x 0.5°		
boxes for one month.							
rzConvPix2	Integer SDS		nlath*nlonh*2	0 to 2,000,000	-		
The number of R-Z coefficient pi	xel counts cor	ditioned on cor	vective rain for near-surf	ace and 2km heigh	nts over 0.5° x 0.5°		
boxes for one month.							
rzPix2	Integer SDS	2	nlath*nlonh*2	0 to 2,000,000	-		
The number of R-Z coefficient pi		near-surface an	d 2km heights over 0.5° >		e month.		
surfRainStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of non-zero near-surface		ned on stratifor		kes for one month.			
surfRainConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of non-zero near-surface	rain conditior	ned on convecti	ve rain over 0.5° x 0.5° bo	exes for one month			
e_surfRainStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of non-zero estimated su	urface rain con	ditioned on stra	tiform rain over 0.5° x 0.	5° boxes for one m	onth.		
e_surfRainConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of non-zero estimated su	urface rain con	ditioned on con	vective rain over 0.5° x 0.	.5° boxes for one m	nonth.		
e_surfRainPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of non-zero estimated su	urface rain ove	r 0.5° x 0.5° box	es for one month.				
shallowRainPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of shallow rain over 0.5°	x 0.5° boxes fo	or one month.					
shallowIsoPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of shallow isolated rain c	over 0.5° x 0.5°	boxes for one i	nonth.				
epsilon0StratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of epsilon0 conditioned of	on stratiform r	ain and use of 2	A21 SRT over 0.5° x 0.5°	boxes for one mon	th.		
epsilon0ConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of epsilon0 conditioned of	on convective	rain and use of	2A21 SRT over 0.5° x 0.5°	boxes for one mor	nth.		
epsilonStratPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of epsilon conditioned or	n stratiform ra	in and use of 2A	21 SRT over 0.5° x 0.5° b	oxes for one mont	h.		
epsilonConvPix2	Integer SDS	2	nlath*nlonh	0 to 2,000,000	-		
Counts of epsilon conditioned or	n convective ra	ain and use of 2	A21 SRT over 0.5° x 0.5° b	oxes for one mont	:h.		
Strat. Rain Pixel Number 2	Integer SDS	4	nlath*nlonh*nh3	0 to 2,000,000	-		
The number of non-zero rain rat	e pixels for str	atiform rain ove	er 0.5° x 0.5° boxes for on	e month.			
Conv. Rain Pixel Number 2	Integer SDS	4	nlath*nlonh*nh3	0 to 2,000,000	-		
The number of non-zero rain rat	e pixels for co	nvective rain ov	er 0.5° x 0.5° boxes for or	ne month.			
Rain Pixel Number 2	Integer SDS	4	nlath*nlonh*nh3	0 to 2,000,000	-		
The Rain Pixel Number 2 is the n	nonthly numb	er of non-zero r	ain rate pixels for path-av	eraged rainfall and	rainfall at the fixed		
heights of 2 km, 4 km, 6 km, and	l path average	over 0.5° x 0.5°	boxes.				

		3A25 Data S	tructure: Part 2		
N	T	Record Size	Dim Size	Damas	11
Name	Туре	(bytes)	(# of records)	Range	Unit
surfRainPix2	Integer SDS	4	nlath*nlonh	0 to 2,000,000,000.	-
Near-surface rain counts at a ho	rizontal resolu	tion of 0.5° x 0.	5°	, , ,	
Bright Band Pixel Number 2	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The number of bright band cour	-	.5° x 0.5° box fo	r one month		
Total Pixel Number 2	Integer SDS	4	nlath*nlonh	0 to 2,000,000	-
The Total Pixel Number 2 is the	number of tota	al pixels over 0.5	5° x 0.5° boxes for one mo	onth.	
rzStratB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h⁻¹
The B parameter in rainfall-refle	ctivity relation	$R = AZ^B from$	fitting of instantaneous F	R, Z pairs condition	ed on stratiform rain.
Computed for near-surface and	2km heights at	t a horizontal re	solution of 0.5° x 0.5°		
rzStratA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h⁻¹
The A parameter in rainfall-refle	-		-	R, Z pairs condition	ed on stratiform rain.
Computed for near-surface and	2km heights at	t a horizontal re			
rzConvB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h⁻¹
The B parameter in rainfall-refle			-		ed on convective
rain. Computed for near-surface	and 2km heig	hts at a horizon		5°	
rzConvA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	-		-	· · · · · · · · · · · · · · · · · · ·	ed on convective
rain. Computed for near-surface	and 2km heig	hts at a horizon	tal resolution of 0.5° x 0.	5°	
		-			. 1
rzB2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The B parameter in rainfall-refle	-		fitting of instantaneous F	R, Z pairs. Compute	d for near-surface
and 2km heights at a horizontal					
rzA2	Float SDS	4	nlath*nlonh*2	0.0 to 1.0	mm h ⁻¹
The A parameter in rainfall-refle	-		fitting of instantaneous H	R, Z pairs. Compute	ed for near-surface
and 2km heights at a horizontal			1.1.4.1.1		. 1
surfRainStratDev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero					
surfRainStratMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	_ mm h ⁻¹
Mean of non-zero near-surface					
surfRainConvDev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero					
	Float SDS				mm h ⁻¹
Mean of non-zero near-surface					
e_surfRainStratdev2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero			clutter (see 2A25 algorith	m user guide) cond	diffioned on
stratiform rain at a horizontal re			u lath *u lau h	0.0 += 100.0	
e_surfRainStratMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur		w clutter (see 2/	AZ5 algorithm user guide) conditioned on st	ratiform rain at a
horizontal resolution of 0.5° x 0.		1	nlath*nlanh	0.0 to 100.0	
e_surfRainConvdev2 Standard doviation of non-zoro	Float SDS	4 aco rain holowy	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero			Liutter (see ZAZS algorith	in user guide) con	
convective rain at a horizontal re		4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
e_surfRainConvMean2	Float SDS	-		0.0 to 400.0	
Mean of non-zero estimated sur		w clutter (see 2/	-zo algorithin user guide	, conditioned on co	Silvective rain at a
horizontal resolution of 0.5° x 0.	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
e_surfRaindev2 Standard deviation of non-zero		-			
of 0.5° x 0.5°	estimated sum	ace rain below (LIULLEI (SEE ZAZO AIGONITA	in user guide) at a	
C.U.X C.UIU					

		3A25 Data S	tructure: Part 3		
Nome	Turne	Record Size	Dim Size	Damaa	11
Name	Туре	(bytes)	(# of records)	Range	Unit
e_surfRainMean2	Float SDS	4	nlath*nlonh	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur	face rain belo	w clutter (see 2/	A25 algorithm user guide)	at a horizontal re	solution of 0.5° x 0.5°
shallowRaindev2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Standard deviation of shallow ra	in at a horizor	ntal resolution o	f 0.5° x 0.5°		
shallow Rain Mean 2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow rain at a horizo	ntal resolution	n of 0.5° x 0.5°			
shallowIsoRaindev2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h⁻¹
Standard deviation of shallow is	olated rain at a	a horizontal reso	olution of 0.5° x 0.5°		
shallowIsoRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3,000.0	mm h ⁻¹
Mean of shallow isolated rain at	a horizontal r	esolution of 0.5	° x 0.5°		
epsilon0StratDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 of				horizontal resolut	ion of 0.5° x 0.5°
epsilon0StratMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o).5°
epsilon0ConvDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon0 of					tion of 0.5° x 0.5°
epsilon0ConvMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon0 conditioned o					0.5°
epsilonStratDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co	nditioned on s	stratiform rain a	nd use of 2A21 SRT at a h	orizontal resolutio	on of 0.5° x 0.5°
epsilonStratMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon conditioned on	stratiform rain	n and use of 2A2	21 SRT at a horizontal reso	olution of 0.5° x 0.	5°
epsilonConvDev2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Standard deviation of epsilon co		convective rain a			on of 0.5° x 0.5°
epsilonConvMean2	Float SDS	4	nlath*nlonh	0.0 to 5.0	-
Mean of epsilon conditioned on					.5°
bbHeightDev2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Standard deviation of bright bar	nd height at a ł	norizontal resolu	ution of 0.5° x 0.5°		
stormHeightDev2	Float SDS	4	nlath*nlonh*2	0.0 to 20,000.0	m
Standard deviation of storm hei		ntal resolution of	of 0.5° x 0.5°		
sdepthDev2	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Standard deviation of snow dep		tal resolution o			
-	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
Mean of snow depth at a horizo		n of 0.5° x 0.5°			
bbZmaxDev2	Float SDS	4	nlath*nlonh	0.0 to 100	dBZ
Mean of maximum reflectivity in		at a horizontal re			
bbZmaxMean2	Float SDS	4	nlath*nlonh	0.0 to 100.0	dBZ
Mean of maximum reflectivity in	-	nt a horizontal re			
surfRainDev2	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Standard Deviation of non-zero		ain rate at a hor			
surfRainMean2	Float SDS	4	nlath*nlonh	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface		orizontal resolu			
BB Height Mean	Float SDS	4	nlath*nlonh	0.0 to 20,000.0	m
BB Height Mean gives the mont		right-band heig			
Storm Height Mean	Float SDS	4	nlath*nlonh*2	0.0 to 20,000.0	m
Storm Height Mean gives the me	onthly means	of the storm hei	ght, unconditioned and co	onditioned for stra	atiform and
convective rain over 0.5° x 0.5° g	grid boxes.				

		3A25 Data S	tructure: Part 4		
Name	Туре	Record Size	Dim Size	Range	Unit
		(bytes)	(# of records)	Ū.	
Strat. Zt Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80	dBZ
The monthly means of the corre					
Conv. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ
Conv. Zm Mean 2 gives the mon			eflectivity of convective	rain at the fixed he	eights of 2 km, 4 km, 9
m, and path average over 0.5° ش					-
Zt Mean 2	Float SDS	4	nlath*nlonh*nh3	0.1 to 80.0	dBZ
't Mean 2 gives the monthly me	eans of the co	rrected reflectivi	ty at the fixed heights o	f 2 km, 4 km, 6 km	, and path average
over 0.5° x 0.5° grid boxes.					
strat. Zm Mean 2	Float SDS	. 4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Strat. Zm Means gives the mont	-		flectivity of stratiform ra	ain at the fixed hei	ghts of 2 km, 4 km, 6
m, and path average over 0.5°					
Conv. Zm Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Conv. Zm Mean 2 gives the mon	-		eflectivity of convective	rain at the fixed h	eight levels of 2 km, 4
m, 6 km, and path average ove	-				
m Mean 2	Float SDS	4	nlath*nlonh*nh3	-20.0 to 80.0	dBZ
Im Mean 2 gives the monthly m		neasured reflection	vity at the fixed height l	evels of 2 km, 4 kn	n, 6 km, and path
verage over 0.5° x 0.5° grid box		-			. 1
itrat. Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
trat. Rain Rate Dev. 2 gives star					boxes for one
nonth. The rain rates are deter					. 1
trat. Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
itrat. Rain Rate Mean 2 gives m					
ates are determined in 2A-25 a					
Conv. Rain Rate Dev. 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Conv. Rain Rate Dev. 2 gives star					
nonth. The rain rates are deter			_		
Conv. Rain Rate Mean 2	Float SDS	4	nlath*nlonh*nh3	0.0 to 3000.0	mm h ⁻¹
Conv. Rain Rate Mean 2 gives m					
ates are determined in 2A-25 a	Float SDS				mm h ⁻¹
Rain Rate Dev. 2		4	nlath*nlonh*nh3	0.0 to 3000.0	
Rain Rate Dev. 2 gives standard					e rain rates are
letermined in 2A-25 and evalua					1 1
Rain Rate Mean 2					mm h ⁻¹
Rain Rate Mean 2 gives means o				onth. The rain rate	es are determined in
A-25 and evaluated at the fixed	-	KM, 4 KM, 6 KM,	and path average.		
GridStructure	Char	5,000	-	-	-
	Attribute				
GridStructure gives the specifica				1 000 to 1 000	
PIAs Corr. Coef.	Float SDS	4	nlat*nlon*nang*3	-1.000 to 1.000	
This is the correlation coefficien	-	n-integrated atte	enuations (SRT, HB, and	oun order PIAs) at	angles of 0, 5, 10 and
5 for a 5° x 5° box for one mon	th. Float SDS	4	n a+* a a -: * 2	1 000 1- 1 000	
		4	nlat*nlon*3	-1.000 to 1.000	-
		•	natiform rain hat	haights /: a	lation as afficient f
These are correlation coefficient	ts of non-zero	rain rates for st			elation coefficient of
These are correlation coefficient rain rates at 2 km vs 4 km, 2 km	ts of non-zero vs 6 km, and	rain rates for st 4 km vs 6 km) fo	r a 5° x 5° box for one m	onth.	
Strat. RR Corr. Coef. These are correlation coefficient rain rates at 2 km vs 4 km, 2 km Conv. RR Corr. Coef.	ts of non-zero vs 6 km, and Float SDS	rain rates for st 4 km vs 6 km) fo 4	r a 5° x 5° box for one m nlat*nlon*3	onth. -1.000 to 1.000	-
These are correlation coefficient ain rates at 2 km vs 4 km, 2 km Conv. RR Corr. Coef. These are correlation coefficient	ts of non-zero vs 6 km, and Float SDS ts of non-zero	rain rates for st 4 km vs 6 km) fo 4 rain rates for co	r a 5° x 5° box for one m nlat*nlon*3 nvective rain between 3	onth. -1.000 to 1.000 3 heights (i.e., corr	-
hese are correlation coefficient ain rates at 2 km vs 4 km, 2 km Conv. RR Corr. Coef.	ts of non-zero vs 6 km, and Float SDS ts of non-zero	rain rates for st 4 km vs 6 km) fo 4 rain rates for co	r a 5° x 5° box for one m nlat*nlon*3 nvective rain between 3	onth. -1.000 to 1.000 3 heights (i.e., corr	-

Name	Type	Record Size	Dim Size	Range	Unit
	Туре	(bytes)	(# of records)	nalige	Unit
RR Corr. Coef.	Float SDS	4	nlat*nlon*3	-1.000 to 1.000	-
These are correlation coefficient	ts of non-zero	rain rates betwe	en 3 heights (i.e., correla	tion coefficient of	rain rates at 2 km vs
4 km, 2 km vs 6 km, and 4 km vs	6 km) for a 5°	x 5° box for one	month. They are calcula	ted under convect	ive condition,
stratiform condition or both.					
surfRainH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of near-surface rain r	ate at a horizo	ntal resolution	of 5 x 5		
epsilon0StratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon0 condition	ed on stratifor	m rain and use 2	2A21 SRT at a horizontal	resolution of 5° x 5	0
epsilon0ConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon0 condition	ed on convect	ive rain and use	2A21 SRT at a horizontal	resolution of 5° x	5°
epsilonStratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon conditione	d on stratiforn	n rain and use 2	A21 SRT at a horizontal re	esolution of 5° x 5°	
epsilonConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,000	-
Histogram of epsilon conditione	d on convectiv	ve rain and use 2	A21 SRT at a horizontal r	esolution of 5° x 5	•
bbZmaxH	Integer SDS		nlat*nlon*ncat2	0 to 32,000	-
Histogram of maximum Zt in brig	-			-	
NUBF Hist.	Integer SDS		nlat*nlon*ncat2	0 to 32,767	-
NUBF (Non-Uniform Beam Filling	-		the NUBF correction for 2		te of 30 different
categories over 5° x 5° grid boxe		U			
Xi Hist.		2	nlat*nlon*ncat2	0 to 32,767	-
The Xi Histograms is the histogra	-	ormity paramet	er determined in 2A-25 f		ver a 5° x 5° box for
one month.		,,		0	
pia2A25H	Integer SDS	2	nlat*nlon*ncat2*nang	0 to 32.767	-
These are histograms of path-at	-				or 30 categories over
a 5° x 5° box for one month.		,	Ū	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0
PIA 0th Hist.	Integer SDS	2	nlat*nlon*ncat2*nang	0 to 32,767	-
PIA 0th Hist. is the histogram of	-		-		5° x 5°. This
histogram is calculated for 30 ca					
PIA hb Hist.	Integer SDS		nlat*nlon*ncat2*nang		-
These are histograms of path-at	-		0		a k-Z relationship at
4 incidence angles (0, 5, 10 and		-		, , ,	
PIA srt Hist.	Integer SDS		nlat*nlon*ncat2*nang	0 to 32,767	-
PIA srt Hist. gives histograms of	-		•		at 4 incidence
angles (0, 5, 10 and 15) for 30 ca				,	
pia2a25ssH	Integer SDS		nlat*nlon*ncat2*nang	0 to 32.767	-
Histogram in counts of final PIA			0	·	angle bins) for 30
categories over a 5° x 5° box for				-, -, -,	
pia0ssH	Integer SDS	2	nlat*nlon*ncat2*nang	0 to 32,767	-
Histogram in counts of PIA from	-		0	,	nd all 49 angle bins)
for 30 categories over a 5° x 5° b				8(.,.,,,,,.	
	ox for one mo	nun.			
			nlat*nlon*ncat2*nang	0 to 32.767	-
piaHbssH	Integer SDS	2	nlat*nlon*ncat2*nang nethod flag at 5 angles (0		- 19 angle bins) for 30
piaHbssH Histogram in counts of PIA from	Integer SDS HB method su	2	•		- 19 angle bins) for 30
piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for	Integer SDS HB method su one month.	2 Ibsetted 2A25 m	nethod flag at 5 angles (0	, 5, 10, 15, and all 4	- I9 angle bins) for 30
piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH	Integer SDS HB method su one month. Integer SDS	2 ubsetted 2A25 m 2	nethod flag at 5 angles (0, nlat*nlon*ncat2*nang	. 5, 10, 15, and all 4 0 to 32,767	-
piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from	Integer SDS HB method su one month. Integer SDS SRT subsetted	2 ubsetted 2A25 m 2	nethod flag at 5 angles (0, nlat*nlon*ncat2*nang	. 5, 10, 15, and all 4 0 to 32,767	-
piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for	Integer SDS HB method su one month. Integer SDS SRT subsetted one month.	2 ubsetted 2A25 m 2 I 2A25 method f	nethod flag at 5 angles (0 nlat*nlon*ncat2*nang lag at 5 angles (0, 5, 10, 1	. 5, 10, 15, and all 4 0 to 32,767 15, and all 49 angle	-
piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for SurfRainStratH	Integer SDS HB method su one month. Integer SDS SRT subsetted one month. Integer SDS	2 ubsetted 2A25 m 2 I 2A25 method f 2	nethod flag at 5 angles (0 nlat*nlon*ncat2*nang lag at 5 angles (0, 5, 10, 1 nlat*nlon*ncat2	, 5, 10, 15, and all 4 0 to 32,767 15, and all 49 angle 0 to 32,767	- bins) for 30
piaHbssH Histogram in counts of PIA from categories over a 5° x 5° box for piaSrtssH Histogram in counts of PIA from categories over a 5° x 5° box for	Integer SDS HB method su one month. Integer SDS SRT subsetted one month. Integer SDS	2 ubsetted 2A25 m 2 I 2A25 method f 2	nethod flag at 5 angles (0 nlat*nlon*ncat2*nang lag at 5 angles (0, 5, 10, 1 nlat*nlon*ncat2	, 5, 10, 15, and all 4 0 to 32,767 15, and all 49 angle 0 to 32,767	- bins) for 30

Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
SurfRainConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
Histogram in counts of non-z	ero near-surface	rainfall condition	ed on convective rain	for 30 categories ove	er a 5° x 5° box for
one month.					
e_surfRainStratH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
Histogram in counts of non-z	-		oned on stratiform rai	n for 30 categories o	ver a 5° x 5° box for
one month.				Ũ	
e surfRainConvH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
Histogram in counts of non-z	-			,	over a 5° x 5° box for
one month.				0	
e_surfRainH	Integer SDS	2	nlat*nlon*ncat2	0 to 32,767	-
Histogram in counts of non-z	-				
bbNadirZmaxH	Integer SDS		nlat*nlon*ncat2	0 to 32,767	_
Histogram in counts of maxir	•			,	ne month
bbNadirWidthH	Integer SDS		nlat*nlon*ncat2	0 to 32,767	
	-				-
Histogram in counts of brigh					1.
bbNadirHH	Integer SDS		nlat*nlon*ncat2	0 to 32,767	-
Histogram in counts of bright					ith.
Strat. Rain Rate Hist.	Integer SDS		nlat*nlon*ncat2*nh1	·	-
These are histograms of non			i rain at five heights (2,	. 4, 6, 10 and 15 km)	and path-average for
20 categories over a 5° x 5° b					
Conv. Rain Rate Hist.	Integer SDS		nlat*nlon*ncat2*nh1		-
These are histograms of non			e rain at five heights (2	, 4, 6, 10 and 15 km)	and path-average
for 20 categories over a 5° x	5° box for one mo	onth.			
Rain Rate Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
These are histograms of non	-zero rain rate pix	els at five height	s (2, 4, 6, 10 and 15 km	n) and path-average f	for 20 categories
over a 5° x 5° box for one mo	onth.				
Strat. Zt Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
The Stratiform Zt Histograms	s are histograms o	of corrected refle	ctivity factors for strati	form rain pixels at five	ve heights (2, 4, 6, 10
and 15 km) and path-average	e for 20 categorie	s over a 5° x 5° bo	ox for one month.		
Conv. Zt Hist.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
The Convective Zt Histogram	-		ectivity factors for conv		five heights (2, 4, 6,
10 and 15 km) and path-aver			-		0 () /)
· · ·					
ZT MIST.	Integer SDS	2	nlat*nlon*ncat2*nh1	0 to 32,767	-
Zt Hist. The 7t Histograms are histog	Integer SDS		nlat*nlon*ncat2*nh1 ors i for rain nixels at fi	0 to 32,767	-) and 15 km) and
The Zt Histograms are histog	rams of corrected	reflectivity facto	ors i for rain pixels at fi	,	-) and 15 km) and
The Zt Histograms are histog path-average for 20 categori	rams of corrected es over a 5° x 5° b	d reflectivity facto	ors i for rain pixels at fi h.	ve heights (2, 4, 6, 10	-) and 15 km) and
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist.	rams of corrected es over a 5° x 5° b Integer SDS	d reflectivity facto box for one montl 2	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1	ve heights (2, 4, 6, 10 0 to 32,767	-
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram	rams of corrected es over a 5° x 5° k Integer SDS ns are histograms	d reflectivity facto ox for one montl 2 of measured refl	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform	ve heights (2, 4, 6, 10 0 to 32,767	-
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for	rams of corrected es over a 5° x 5° k Integer SDS as are histograms 20 categories over	d reflectivity facto ox for one montl 2 of measured refl er a 5° x 5° box fo	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month.	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he	-
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist.	rams of corrected es over a 5° x 5° k Integer SDS are histograms 20 categories ove Integer SDS	d reflectivity facto oox for one month 2 of measured refl er a 5° x 5° box fo 2	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767	- ights (2, 4, 6, 10 and -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram	rams of corrected es over a 5° x 5° b Integer SDS are histograms 20 categories ove Integer SDS ms are histograms	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 flectivities of convectiv	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767	- ights (2, 4, 6, 10 and -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average	rams of corrected es over a 5° x 5° b Integer SDS are histograms 20 categories ove Integer SDS ms are histograms e for 20 categorie	d reflectivity facto oox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 flectivities of convectiv ox for one month.	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h	- ights (2, 4, 6, 10 and -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average Zm Hist.	rams of corrected es over a 5° x 5° k Integer SDS as are histograms 20 categories ove Integer SDS ms are histograms e for 20 categorie Integer SDS	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 ilectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average Zm Hist. The Zm Histograms are histo	rams of corrected es over a 5° x 5° k Integer SDS are histograms 20 categories ove Integer SDS ms are histograms e for 20 categorie Integer SDS grams of measure	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2 ed reflectivities o	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 ilectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average Zm Hist. The Zm Histograms are histo	rams of corrected es over a 5° x 5° k Integer SDS are histograms 20 categories ove Integer SDS ms are histograms e for 20 categorie Integer SDS grams of measure	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2 ed reflectivities o or one month.	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 flectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1 f rain pixels at five heig	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist.	rams of corrected es over a 5° x 5° k Integer SDS are histograms 20 categories ove Integer SDS ms are histograms e for 20 categorie Integer SDS grams of measure	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2 ed reflectivities o or one month.	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 ilectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average Zm Hist. The Zm Histograms are histo average for 20 categories over	rams of corrected es over a 5° x 5° k Integer SDS as are histograms 20 categories ove Integer SDS ms are histograms e for 20 categorie Integer SDS grams of measure er a 5° x 5° box i f Integer SDS	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2 ed reflectivities or or one month. 2	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 flectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1 f rain pixels at five heig nlat*nlon*ncat2	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767 ghts (2, 4, 6, 10 and 1 0 to 32,767	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 - .5 km) and path- -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average Zm Hist. The Zm Histograms are histo average for 20 categories over Snow-ice Layer Hist.	rams of corrected es over a 5° x 5° b Integer SDS as are histograms 20 categories over Integer SDS ms are histograms e for 20 categorie Integer SDS grams of measure er a 5° x 5° box i f Integer SDS depth of snow-ice	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2 ed reflectivities or or one month. 2 e layer for 30 cate	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 flectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1 f rain pixels at five heig nlat*nlon*ncat2 egories over a 5° x 5° b	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767 ghts (2, 4, 6, 10 and 1 0 to 32,767 ox for one month. Th	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 - .5 km) and path- -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average Zm Hist. The Zm Histograms are histo average for 20 categories over Snow-ice Layer Hist. These are histograms of the	rams of corrected es over a 5° x 5° b Integer SDS as are histograms 20 categories over Integer SDS ms are histograms e for 20 categorie Integer SDS grams of measure er a 5° x 5° box i f Integer SDS depth of snow-ice	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2 ed reflectivities or or one month. 2 e layer for 30 cate	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 flectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1 f rain pixels at five heig nlat*nlon*ncat2 egories over a 5° x 5° b	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767 ghts (2, 4, 6, 10 and 1 0 to 32,767 ox for one month. Th	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 - .5 km) and path- -
The Zt Histograms are histog path-average for 20 categori Strat. Zm Hist. The Stratiform Zm Histogram 15 km) and path-average for Conv. Zm Hist. The Convective Zm Histogram and 15 km) and path-average Zm Hist. The Zm Histograms are histo average for 20 categories over Snow-ice Layer Hist. These are histograms of the	rams of corrected es over a 5° x 5° b Integer SDS as are histograms 20 categories over Integer SDS ms are histograms e for 20 categorie Integer SDS grams of measure er a 5° x 5° box i f Integer SDS depth of snow-ice	d reflectivity facto ox for one month 2 of measured refl er a 5° x 5° box fo 2 s of measured ref s over a 5° x 5° bo 2 ed reflectivities of or one month. 2 e layer for 30 cate ective storm heig	ors i for rain pixels at fi h. nlat*nlon*ncat2*nh1 ectivities of stratiform or one month. nlat*nlon*ncat2*nh1 flectivities of convectiv ox for one month. nlat*nlon*ncat2*nh1 f rain pixels at five heig nlat*nlon*ncat2 egories over a 5° x 5° b	ve heights (2, 4, 6, 10 0 to 32,767 rain pixels at five he 0 to 32,767 e rain pixels at five h 0 to 32,767 ghts (2, 4, 6, 10 and 1 0 to 32,767 ox for one month. Th	- ights (2, 4, 6, 10 and - eights (2, 4, 6, 10 - .5 km) and path- -

BB Height Hist. These are histograms of the bridetected. Strat. Storm Height Hist. These are histograms of the 'ef Conv. Storm Height Hist. These are histograms of the 'ef Storm Height Hist. These are histograms of the 'ef epsilonOStratPix1	Integer SDS ffective' storm h Integer SDS	2	nlat*nlon*ncat2		- nat the bright band is
These are histograms of the bridetected. Strat. Storm Height Hist. These are histograms of the 'ef Conv. Storm Height Hist. These are histograms of the 'ef Storm Height Hist. These are histograms of the 'ef	ight-band heigh Integer SDS ffective' storm h Integer SDS	ts for 30 catego	ries over a 5 x 5 box for o nlat*nlon*ncat2	ne month, given th	nat the bright band is
detected. Strat. Storm Height Hist. These are histograms of the 'ef Conv. Storm Height Hist. These are histograms of the 'ef Storm Height Hist. These are histograms of the 'ef	Integer SDS ffective' storm h Integer SDS	2	nlat*nlon*ncat2		nat the bright band is
These are histograms of the 'ef Conv. Storm Height Hist. These are histograms of the 'ef Storm Height Hist. These are histograms of the 'ef	ffective' storm h Integer SDS			0+022767	
Conv. Storm Height Hist. These are histograms of the 'ef Storm Height Hist. These are histograms of the 'ef	Integer SDS	eights for strati		0 to 32,767	-
These are histograms of the 'ef Storm Height Hist. These are histograms of the 'ef	-				x for one month.
Storm Height Hist. These are histograms of the 'ef		2	nlat*nlon*ncat2	0 to 32,767	-
These are histograms of the 'ef					ox for one month.
		2	nlat*nlon*ncat2	0 to 32,767	-
epsilon0StratPix1					
	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of epsilon0 conditioned					olution of 5° x 5°
epsilon0ConvPix1	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of epsilon0 conditioned					solution of 5° x 5°
epsilonStratPix1	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of epsilon conditioned			-		lution of 5° x 5°
epsilonConvPix1	Integer SDS		nlat*nlon	0 to 32,767	-
Counts of epsilon conditioned					Jution of 5° x 5°
convCCoefPix	Integer SDS		nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficie					esolution of 5° x 5°
stratCCoefPix	Integer SDS	2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficie					solution of 5° x 5°
rainCCoefPix	Integer SDS	2	nlat*nlon*3	0 to 32,767	-
Counts for correlation coefficie					
pia2a25ssPix	0	2	nlat*nlon	0 to 32,767	-
Counts of final PIA from 2A25 f guide) at a horizontal resolutio		ata where the 24	A25 method flag has been	set (see 2A25/3A2	25 algorithm users
piaOssPix	Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of PIA using Oth-order r	nethod for sub-	set of data whe	re the 2A25 method flag		2A25/3A25 algorithm
users guide) at a horizontal res			-		
piaHbssPix	Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of PIA using HB method guide) at a horizontal resolutio		data where the 2	2A25 method flag has bee	en set (see 2A25/3	A25 algorithm users
piaSrtssPix	Integer SDS	2	nlat*nlon	0 to 32,767	-
Counts of PIA using SRT metho guide) at a horizontal resolutio	d for sub-set of				3A25 algorithm users
rzStratPix1	Integer SDS	4	nlat*nlon*2	0 to 2,000,000	-
The number of R-Z coefficient	-	-			al resolution of 5° v
5°				-	
rzConvPix1	Integer SDS		nlat*nlon*2	0 to 2,000,000	-
The number of R-Z coefficient 5°	pixel counts for	convective rain	near-surface and 2km he	ights, at a horizont	al resolution of 5° x
rzPix1	Integer SDS	4	nlat*nlon*2	0 to 2,000,000	-
The number of R-Z coefficient	-	near-surface an	d 2km heights, at a horizo	ontal resolution of	5° x 5°
e_surfRainStratPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of non-zero estimation	ated surface rai	n pixel counts co	onditioned on stratiform	rain, at a horizonta	al resolution of 5° x 5
e_surfRainConvPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-
The number of non-zero estima 5°	-	n pixel counts co	onditioned on convective		al resolution of 5° x
<u> </u>			tructure: Part 8		
	Туре	Record Size	Dim Size	Range	Unit
Name	i ypc	(bytes)	(# of records)		

-	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation tion of 5° x 5° Float SDS ectivity relation tion of 5° x 5° Float SDS	horizontal reso 4 R = AZ^B from horizontal reso 4 R = AZ^B from 4 R = AZ^B from 4 ace rain below of	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, nlat*nlon*2 fitting of instantaneous R, nlat*nlon	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute 0.0 to 1.0 Z pairs. Compute 0.0 to 400.0	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface mm h ⁻¹ d for near-surface mm h ⁻¹			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1 The B parameter in rainfall-reflerational 2km, at a horizontal resolut rzA1 The A parameter in rainfall-refleration and 2km, at a horizontal resolut e_surfRainDev1	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation tion of 5° x 5° Float SDS ectivity relation tion of 5° x 5° Float SDS	horizontal reso 4 R = AZ^B from horizontal reso 4 R = AZ^B from 4 R = AZ^B from 4 ace rain below of	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, nlat*nlon*2 fitting of instantaneous R, nlat*nlon clutter conditioned on stra ructure: Part 9	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute 0.0 to 1.0 Z pairs. Compute 0.0 to 400.0	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface mm h ⁻¹ d for near-surface mm h ⁻¹			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1 The B parameter in rainfall-reflerational 2km, at a horizontal resolut rzA1 The A parameter in rainfall-refleration and 2km, at a horizontal resolut e_surfRainDev1	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation tion of 5° x 5° Float SDS ectivity relation tion of 5° x 5° Float SDS	horizontal reso 4 R = AZ^B from horizontal reso 4 R = AZ^B from 4 R = AZ^B from 4	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, nlat*nlon*2 fitting of instantaneous R, nlat*nlon	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute 0.0 to 1.0 Z pairs. Compute 0.0 to 400.0	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface mm h ⁻¹ d for near-surface mm h ⁻¹			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1 The B parameter in rainfall-reflerational 2km, at a horizontal resolut rzA1 The A parameter in rainfall-refleration and 2km, at a horizontal resolut e_surfRainDev1	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation tion of 5° x 5° Float SDS ectivity relation tion of 5° x 5° Float SDS	horizontal reso 4 R = AZ^B from horizontal reso 4 R = AZ^B from 4 R = AZ^B from 4	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, nlat*nlon*2 fitting of instantaneous R, nlat*nlon	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute 0.0 to 1.0 Z pairs. Compute 0.0 to 400.0	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface mm h ⁻¹ d for near-surface mm h ⁻¹			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1 The B parameter in rainfall-reflerational 2km, at a horizontal resolut rzA1 The A parameter in rainfall-refleration and 2km, at a horizontal resolut	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation tion of 5° x 5° Float SDS ectivity relation	horizontal reso 4 R = AZ^B from horizontal reso 4 R = AZ^B from 4	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, nlat*nlon*2 fitting of instantaneous R,	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute 0.0 to 1.0 Z pairs. Compute	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface mm h ⁻¹ d for near-surface			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1 The B parameter in rainfall-refleration and 2km, at a horizontal resolut rzA1 The A parameter in rainfall-refleration	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation tion of 5° x 5° Float SDS ectivity relation	horizontal reso 4 R = AZ^B from horizontal reso 4 R = AZ^B from 4	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, nlat*nlon*2	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute 0.0 to 1.0	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface mm h ⁻¹			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1 The B parameter in rainfall-refleration and 2km, at a horizontal resolut rzA1	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation tion of 5° x 5° Float SDS	horizontal reso 4 R = AZ^B from horizontal reso 4 R = AZ^B from 4	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, nlat*nlon*2	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute 0.0 to 1.0	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface mm h ⁻¹			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1 The B parameter in rainfall-refleration	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS ectivity relation	horizontal reso 4 R = AZ^B from horizontal reso 4	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R,	0.0 to 1.0 Z pairs conditione 0.0 to 1.0 Z pairs. Compute	mm h ⁻¹ ed on convective mm h ⁻¹ d for near-surface			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration. Computed for near-surface rzB1	e and 2km, at a Float SDS ectivity relation e and 2km, at a Float SDS	horizontal reso 4 R = AZ^B from horizontal reso 4	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5° nlat*nlon*2	0.0 to 1.0 Z pairs conditione 0.0 to 1.0	mm h ⁻¹ ed on convective mm h ⁻¹			
The B parameter in rainfall-refler rain. Computed for near-surface rzConvA1 The A parameter in rainfall-refler rain. Computed for near-surface	e and 2km, at a Float SDS ectivity relation e and 2km, at a	horizontal reso 4 R = AZ^B from horizontal reso	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R, lution of 5° x 5°	0.0 to 1.0 Z pairs condition	mm h ⁻¹ ed on convective			
The B parameter in rainfall-refleration. Computed for near-surface rzConvA1 The A parameter in rainfall-refleration	e and 2km, at a Float SDS ectivity relation	horizontal reso 4 R = AZ^B from	lution of 5° x 5° nlat*nlon*2 fitting of instantaneous R,	0.0 to 1.0	mm h ⁻¹			
The B parameter in rainfall-refleration rain. Computed for near-surface rzConvA1	e and 2km, at a Float SDS	horizontal reso 4	lution of 5° x 5° nlat*nlon*2	0.0 to 1.0	mm h ⁻¹			
The B parameter in rainfall-reflered rain. Computed for near-surface	e and 2km, at a	horizontal reso	lution of 5° x 5°	-				
The B parameter in rainfall-refle			-					
	The B parameter in rainfall-reflectivity relation R = AZ^B from fitting of instantaneous R, Z pairs conditioned on convective rain. Computed for near-surface and 2km, at a horizontal resolution of 5° x 5°							
rzconvB1								
	Float SDS		nlat*nlon*2	0.0 to 1.0	mm h ⁻¹			
Computed for near-surface and	-		-					
The A parameter in rainfall-refle		-						
rzStratA1	Float SDS	4		0.0 to 1.0	mm h⁻¹			
Computed for near-surface and	-		-					
The B parameter in rainfall-refle		•						
rzStratB1	Float SDS	4	nlat*nlon*2	0.0 to 1.0	mm h ⁻¹			
The number of total pixels over	-			0102,000,000				
Total Pixel Number 1	Integer SDS	4 x 5 box for on	nlat*nlon	0 to 2,000,000				
Bright Band Pixel Number 1 The number of bright band court	0	4 ° x 5° hox for on		0 to 2,000,000	-			
The number of bright band nadi	-			0 to 2 000 000				
bbNadirPix1		4 wor oach E ^o y E ^o	nlat*nlon 2 box	0 to 2,000,000	-			
for one month		4		0.4- 0.000.000				
The number of non-zero rain ra	te pixels at the	tixed heights of	2, 4, 6, 10 and 15 km and	tor path-average	over 5° x 5° boxes			
Rain Pixel Number 1	Integer SDS	4 Such besiehtere f		0 to 2,000,000	-			
over 5° x 5° boxes for one mont		4		0.4- 2.000.000				
The number of non-zero rain ra		ivective rain at	the fixed heights of 2, 4, 6	, 10 and 15 km an	id for path-average			
Conv. Rain Pixel Number 1	Integer SDS			0 to 2,000,000	-			
10 and 15 km and for path-aver	-							
The Stratiform Rain Pixel Numb				orm rain at the fix	ed heights of 2, 4, 6,			
Strat. Rain Pixel Number 1	Integer SDS	4		0 to 2,000,000	-			
parameter is accumulated at for								
Total Angle Pixel Number 1 is th				ude grid box for a	month. This			
Total Angle Pixel Number 1	Integer SDS		nlat*nlon*nang	0 to 30,000	-			
month. This parameter is accum								
Rain Angle Pixel Number 1 is the				x 5° latitude-longit	tude grid box for a			
Rain Angle Pixel Number 1		2	•	0 to 30,000	-			
Near-surface rain counts at a ho								
surfRainPix1	Integer SDS	4	nlat*nlon	0 to 2,000,000	-			
Counts of Near-surface rain fall		convective rair						
surfRainConvPix1	Integer SDS		nlat*nlon	0 to 32,767	-			
Counts of Near-surface rain fall				of 5° x 5°				
	Integer SDS	2	nlat*nlon	0 to 32,767	-			
surfRainStratPix1	-	n pixel counts at						
The number of non-zero estima		4	nlat*nlon	0 to 2,000,000	-			
	Integer SDS	Λ	nlat*nlar	0 to 2 000 000				

o curfDainStratMaan1		1	nlat*nlan	0.0 to 100.0	mm h-1
e_surfRainStratMean1	Float SDS	4 v cluttor (Soo 2)	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur horizontal resolution of 5° x 5°	race rain belov	v clutter (See 2/	425 algorithm user guide)	conditioned on st	rationin rain at a
	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
e_surfRainConvDev1 Standard deviation of non-zero e		-			
			Liutter (See ZA25 algorith)	in user guide) cond	
convective rain at a horizontal re		4 × 5	nlat*nlon	0.0 to 400.0	mm h ⁻¹
<pre>e_surfRainConvMean1 Mean of non-zero estimated sur</pre>	Float SDS	•			
horizontal resolution of 5° x 5°		v clutter (see 2/			Silvective fails at a
e_surfRainDev1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Standard deviation of non-zero	estimated surfa	ace rain below o	clutter (See 2A25 algorith	m user guide) at a	horizontal resolution
of 5° x 5°					
e_surfRainMean1	Float SDS	4	nlat*nlon	0.0 to 400.0	mm h ⁻¹
Mean of non-zero estimated sur	face rain belov	v clutter (See 2/		at a horizontal res	solution of 5° x 5°
sdepthDev1	Float SDS	4	nlat*nlon	0.0 to 20,000.0	m
Standard deviation of snow dept					
sdepthMean1	Float SDS	4	nlat*nlon	0.0 to 20,000.0	m
Mean of snow depth at a horizon					
bbZmaxDev1	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Standard Deviation of maximum		-			
bbZmaxMean1	Float SDS	4	nlat*nlon	0.0 to 100.0	dBZ
Mean of maximum reflectivity in					
surfRainStratDev1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero					
surfRainStratMean1	Float SDS	4 Second an atreati	nlat*nlon	0.0 to 3000.0	° mm h⁻₁
Mean of non-zero near-surface					
surfRainConvDev1	Float SDS	4 in rate conditio	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Standard deviation of non-zero i surfRainConvMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h^{-1}
Mean of non-zero near-surface i		-			
surfRainDev1	Float SDS		nlat*nlon	0.0 to 3000.0	o mm h ⁻¹
Standard deviation of non-zero i		•			
surfRainMean1	Float SDS	4	nlat*nlon	0.0 to 3000.0	mm h ⁻¹
Mean of non-zero near-surface i		•		0.0 10 5000.0	
epsilon0StratDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon0 c		•			ion of 5° × 5°
epsilon0StratMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned of		•			
epsilon0ConvDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon0 c		•			tion of 5° x 5°
epsilon0ConvMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon0 conditioned of		•			
epsilonStratDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon co		•			on of 5° x 5°
epsilonStratMean1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on		and use of 2A2			
epsilonConvDev1	Float SDS	4	nlat*nlon	0.0 to 5.0	-
Standard deviation of epsilon co		onvective rain a			on of 5° x 5°
•			ructure: Part 10		
Norma	Turn c	Record Size	Dim Size	Dama-	11
Name	Туре	(bytes)	(# of records)	Range	Unit
	· I			•	

ancilan Convillagent		4	nlat*nlan		
epsilonConvMean1	Float SDS	4 n and use of 24	nlat*nlon	0.0 to 5.0	-
Mean of epsilon conditioned on bbNadirZmaxDev1	Float SDS	n and use of ZA	21 SRT at a norizontal res nlat*nlon		407
Standard deviation of maximum		•		0.0 to 70.0	dBZ
bbNadirZmaxMean1	Float SDS		nlat*nlon	0.0 to 70.0	dBZ
Mean of maximum Z in bright ba		•		0.0 10 70.0	UDZ
bbNadirWidthDev1	Float SDS	2	nlat*nlon	0.0 to 10,000	m
Standard deviation of bright bar		-		0.0 10 10,000	m
bbNadirWidthMean1	Float SDS	4	nlat*nlon	0.0 to 10,000	m
Width of bright band from nadir		•		0.0 10 10,000	
bbNadirHtDev1	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Standard deviation of bright bar		=		0.0 10 20,000	
bbNadirHtMean1	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Height of bright band from nadi		•		0.0 10 20,000	
BB Height Dev.	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Monthly deviation of the bright		•		2.0 10 20,000	
BB Height Mean	Float SDS	4	nlat*nlon	0.0 to 20,000	m
Monthly means of the bright ba		•			
NUBF Correction Factor Dev.	Float SDS	4	nlat*nlon	0.0 to 2.0	-
Monthly standard deviation of t		•			f 5° x 5°
NUBF Correction Factor Mean		4	nlat*nlon	0.0 to 2.0	-
Monthly mean of NUBF correcti		•			
Xi Dev.	Float SDS	4	nlat*nlon	0.0 to 99.0	-
Monthly standard deviation of t		-			horizontal resolution
of 5° x 5°					
Xi Mean	Float SDS	4	nlat*nlon	0.0 to 99.0	-
Monthly means of the horizonta		ty parameter o			esolution of 5° x 5°
Storm Height Dev.	Float SDS	4	nlat*nlon*3	.0.0 to 20,000.0	m
Standard deviation of the storm	height for con	ditions of strati	form rain, convective rain	and unconditiona	l rain
Storm Height Mean	Float SDS	4	nlat*nlon*3	0.0 to 20,000.0	m
Monthly mean of the storm heig	ght for conditio	ons of stratiform	rain, convective rain and	unconditional rai	n
pia2a25ssDev	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Standard deviation of final PIA (path-integrate	d attenuation, o	one-way) from 2A25 for a	sub-set of data wh	here the 2A25
method flag has been set (see 2	A25/3A25 algo	rithm users gui	de). It has a horizontal res	solution of 5° x 5°.	
pia2a25ssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of final PIA (path-integrat	ed attenuation	, one-way) fron	n 2A25 for a sub-set of da	ta where the 2A25	method flag has
been set (see 2A25/3A25 algorit		e). It has a horiz	ontal resolution of 5° x 5°		
pia0ssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Standard deviation of PIA (path-	-				ata where the 2A25
method flag has been set (see 2		rithm users gui	•	olution of 5° x 5°.	
pia 0ss Mean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of PIA (path-integrated at					e 2A25 method flag
has been set (see 2A25/3A25 alg		guide). It has a h			
piaHbssDev	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Standard deviation of PIA (path-	-				ere the 2A25 method
flag has been set (see 2A25/3A2					
piaHbssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
Mean of PIA (path-integrated at					method flag has
been set (see 2A25/3A25 algorit	thm users guid			•	
		3A25 Data St	ructure: Part 11		
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit

and means at the fixed he Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he Zt Dev. 1 Monthly standard deviation average over 5° x 5° boxes Zt Mean 1 Monthly means of correct x 5° boxes for one month Name	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS ons of corrected rac s using data from 24 Float SDS ted radar reflectivity	e fixed height 4 y for convecti and 15 km are 4 dar reflectivity A-25 4 y factors at th -25	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso e calculated using data from nlat*nlon*nh1 y factors at the fixed heigh nlat*nlon*nh1 e fixed heights of 2, 4, 6, 1 a Structure: Part 12 ze Dim Size	are calculated using o 0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0 its of 2, 4, 6, 1 0 and 0.0 to 80.0	data from 2A-25. dBZ e path-averaged mean dBZ 15 km and for path- dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he Zt Dev. 1 Monthly standard deviation average over 5° x 5° boxes Zt Mean 1 Monthly means of correct	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS ons of corrected rac s using data from 24 Float SDS ted radar reflectivity	e fixed height 4 y for convection 15 km are 4 dar reflectivity A-25 4 y factors at th -25 3A25 Dat	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso e calculated using data from nlat*nlon*nh1 y factors at the fixed heigh nlat*nlon*nh1 e fixed heights of 2, 4, 6, 1 a Structure: Part 12	are calculated using o 0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0 its of 2, 4, 6, 1 0 and 0.0 to 80.0	data from 2A-25. dBZ e path-averaged mean dBZ 15 km and for path- dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he Zt Dev. 1 Monthly standard deviation average over 5° x 5° boxes Zt Mean 1 Monthly means of correct	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS ons of corrected rac s using data from 24 Float SDS ted radar reflectivity	e fixed height 4 y for convecti and 15 km are 4 dar reflectivity A-25 4 y factors at th	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso e calculated using data from nlat*nlon*nh1 y factors at the fixed heigh nlat*nlon*nh1	are calculated using o 0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0 its of 2, 4, 6, 1 0 and 0.0 to 80.0	data from 2A-25. dBZ e path-averaged mean dBZ 15 km and for path- dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he Zt Dev. 1 Monthly standard deviation average over 5° x 5° boxes Zt Mean 1	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS ons of corrected rac s using data from 24 Float SDS	e fixed height 4 y for convection 15 km are 4 dar reflectivity 4-25 4	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso e calculated using data from nlat*nlon*nh1 y factors at the fixed heigh nlat*nlon*nh1	are calculated using o 0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0 its of 2, 4, 6, 1 0 and 0.0 to 80.0	data from 2A-25. dBZ e path-averaged mean dBZ 15 km and for path- dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he Zt Dev. 1 Monthly standard deviation average over 5° x 5° boxes Zt Mean 1	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS ons of corrected rac s using data from 24 Float SDS	e fixed height 4 y for convection 15 km are 4 dar reflectivity 4-25 4	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso e calculated using data from nlat*nlon*nh1 y factors at the fixed heigh nlat*nlon*nh1	are calculated using o 0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0 its of 2, 4, 6, 1 0 and 0.0 to 80.0	data from 2A-25. dBZ e path-averaged mean dBZ 15 km and for path- dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he It Dev. 1 Monthly standard deviation	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS ons of corrected rac	e fixed height 4 y for convecti and 15 km are 4 dar reflectivity	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso e calculated using data from nlat*nlon*nh1 y factors at the fixed heigh	are calculated using (0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0 its of 2, 4, 6, 1 0 and	data from 2A-25. dBZ e path-averaged mea dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he Ct Dev. 1 Monthly standard deviation	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS ons of corrected rac	e fixed height 4 y for convecti and 15 km are 4 dar reflectivity	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso calculated using data from nlat*nlon*nh1	are calculated using (0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0	data from 2A-25. dBZ e path-averaged mea dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he Zt Dev. 1	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a Float SDS	e fixed height 4 y for convection and 15 km are 4	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso calculated using data from nlat*nlon*nh1	are calculated using (0.1 to 80.0 olution of 5° x 5°. The m 2A-25. 0.0 to 80.0	data from 2A-25. dBZ e path-averaged mea dBZ
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct and means at the fixed he	ion and those at the Float SDS ted radar reflectivity eights of 2, 4, 6, 10 a	e fixed height 4 y for convecti	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso calculated using data from	are calculated using o 0.1 to 80.0 plution of 5° x 5°. The	data from 2A-25. dBZ e path-averaged mean
Conv. Zt Dev. 1 Monthly standard deviation averaged standard deviation Conv. Zt Mean 1 Monthly means of correct	ion and those at the Float SDS ted radar reflectivity	e fixed height 4 y for convecti	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1 ve rain at a horizontal reso	are calculated using o 0.1 to 80.0 plution of 5° x 5°. The	data from 2A-25. dBZ
Conv. Zt Dev. 1 Monthly standard deviation Iveraged standard deviation Conv. Zt Mean 1	ion and those at the Float SDS	e fixed height 4	s of 2, 4, 6, 10 and 15 km a nlat*nlon*nh1	are calculated using of 0.1 to 80.0	data from 2A-25. dBZ
Conv. Zt Dev. 1 Monthly standard deviation					
C onv. Zt Dev. 1 Monthly standard deviation					
					
ind means at the fixed he	Float SDS	4	nlat*nlon*nh1	0.0 to 80.0	dBZ
	ghts of 2, 4, 6, 10 a	nd 15 km are	e calculated using data from	m 2A-25.	
			m rain at a horizontal reso		e path-averaged mean
Strat. Zt Mean 1	Float SDS	4	nlat*nlon*nh1	0.1 to 80.0	dBZ
			s of 2, 4, 6, 10 and 15 km a		
Monthly standard deviation	ons of corrected rad	lar reflectivity	/ for stratiform rain at a ho	orizontal resolution of	of 5° x 5°. The path-
Strat. Zt Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 80.0	dBZ
nas a horizontal resolutior					
Nonthly means of SRT (su	urface reference tec	hnique) path	-integrated attenuation ca	lculated at four fixed	d incidence angles. It
PIA srt Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
esolution of 5° x 5°.					
Nonthly standard deviation	on of SRT path-integ	grated attenu	ation calculated at four fix	ked incidence angles	. It has a horizontal
PIA srt Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
5°.					
/onthly means of HB pat	h-integrated attenu	ation calcula	ted at four fixed incidence	angles. It has a horiz	zontal resolution of 5
PIA hb Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
esolution of 5° x 5°.					
Aonthly standard deviation	on of HB path-integ	rated attenua	ation calculated at four fixe	ed incidence angles.	It has a horizontal
PIA hb Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
esolution of 5° x 5°.					
Monthly means of the 0th	n-order path-integra	ited attenuat	ion calculated at four fixed	d incidence angles. It	has a horizontal
PIA 0th Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
norizontal resolution of 5	x 5.				
Monthly standard deviation	on of the 0th-order	path-integrat	ed attenuation calculated	at four fixed incider	nce angles. It has a
PIA 0th Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
5° x 5°.					
Monthly means of 2A25 p	ath-integrated atte	nuation calcu	lated at four fixed inciden	ce angles. It has a ho	prizontal resolution of
bia2a25Mean	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
esolution of 5° x 5°.					
Monthly standard deviation	on of 2A25 path-inte	egrated atten	uation calculated at four f	fixed incidence angle	es. It has a horizontal
pia2a25Dev.	Float SDS	4	nlat*nlon*nang	0.0 to 100.0	dB
see 2A25/3A25 algorithm	n users guide). It has	a horizontal	resolution of 5° x 5°.		
Vean of PIA (path-integra	ated attenuation, or	ne-way) for SF	RT for a sub-set of data wh	ere the 2A25 metho	d flag has been set
biaSrtssMean	Float SDS	4	nlat*nlon	0.0 to 100.0	dB
			s a horizontal resolution of		
andard deviation of PIA		-	ne-way) for SRT for a sub-s		
biaSrtssDev	Float SDS	4	nlat*nlon	0.0 to 100.0	dB

Monthly standard deviations of					
averaged standard deviation a		_		_	
Strat. Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured r					e path-averaged mean
and means at the fixed heights					
Conv. Zm Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of		•			
averaged standard deviation a					
Conv. Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured r					e path-averaged
mean and means at the fixed l	neights of 2, 4,	6, 10 and 15 km	n are calculated using data	a from 1C-21.	
Zm Dev.1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly standard deviations of		lar reflectivity a	at the fixed heights of 2, 4	, 6, 10 and 15 km a	nd for path-average
over 5° x 5° boxes using data f	rom 1C-21				
Zm Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 100.0	dBZ
Monthly means of measured r	adar reflectivity	y at the fixed he	eights of 2, 4, 6, 10 and 15	5 km and for path-a	iverage over 5° x 5°
boxes using data from 1C-21					
Strat. Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h⁻¹
Monthly standard deviations of		rates for strati	form rain over 5° x 5° box	æs	
Strat. Rain Rates Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero ra		itiform rain ove	r 5° x 5° boxes		
Conv. Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h⁻¹
Monthly standard deviations of	of non-zero rain	rates for conve	ective rain over 5° x 5° bo	xes	
Conv. Rain Rate Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly means of non-zero ra	in rates for con	vective rain ov	er 5° x 5° boxes		
Rain Rates Dev. 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h ⁻¹
Monthly standard deviations of	of non-zero rain	rates over 5° x	5° boxes		
Rain Rate Mean 1	Float SDS	4	nlat*nlon*nh1	0.0 to 3000.0	mm h⁻¹
Monthly means of non-zero ra	in rates over 5°	' x 5° boxes			
GridStructure	Char Att.	5,000	-	-	-
GridStructure gives the specifi	cation of the ge	ometry of the	grids.		
PS Metadata	Char Att.	10,000	-	-	-
Product Specific Metadata					
ECS Core Metadata	Char Att.	10,000	-	-	-
ECS Core Metadata					

Notes:

- The "scale by" column was omitted because none of the 3A25 variables are scaled.
- Missing data are given a value of -9999.
- The *nlat* and *nlon* dimensions refer to the 5° latitude and longitudes, respectively, whereas the *nlath* and *nlonh* dimensions refer to the 0.5° latitude and longitude dimensions, respectively.
- The dimension *nh1* refers to the number of fixed heights about the earth ellipsoid, in order: 2, 4, 6, 10, and 15 km.
- The dimension *nh3* refers to the number of fixed heights above the earth ellipsoid, in order: 2, 4, and 6 km.
- The dimension *nang* refers to the number of crossed incidence angles at 0, 5°, 10°, and 15°, respectively.
- The dimension *ncat2* refers to the second number of categories for histograms (a total of 30).

3A26: Surface Rain Total

Temporal Coverage	Start Date: 1997-12-01
	Stop Date: 2015-03-31
Goographic Coverage	Latitude: 40°S – 40°N
Geographic Coverage	Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	5° x 5°; nlat = 16, nlon = 72
Average File Size	≈ 6 MB compressed

3B31: Combined Rainfall

		3A26 Data	Format Structure		
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Att.	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Att.	10,000	-	-	-
Product specific metadata					
GridStructure	Char Att.	5,000	-	-	-
GridStructure gives the specification	ation of the geo	metry of the	e grids.		
Total Counts	Integer SDS	4	nlat*nlon	0-2,147,483,647	-
Total number of counts (measu	rements) per mo	onth at eacl	n 5° x 5° boxes.		
Rain Counts	Integer SDS	4	nlat*nlon*nh2	0-2,147,483,647	-
Total number of rain counts (m	easurements) pe	er month at	each 5° x 5° boxes. This is comp	uted at 2km, 4km, 6km	, and for
the path-average.					
Zero Order pDf	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	
Probability distribution function	n (cumulative) in	counts of t	he zeroth order rain rate estima	te at each 5° x 5° boxes	. The pDf
is computed at 2km, 4km, 6km,	and for the path	h-average.			
HB pDf	Integer SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
			he Hitschfield-Bordan (HB) rain r	ate estimate at each 5	° x 5°
boxes. The pDf is computed at 2	2km, 4km, 6km,	and for the	path-average.		
pDf2A25	Float SDS	4	nlat*nlon*ncat3*nh2*nthrsh	1 – 2,147,483,647	-
Probability distribution function	n (cumulative) in	counts of t	he Surface Reference Technique	(SRT) rain rate estimat	e at each
5° x 5° boxes. The pDf is compu	ted at 2km, 4km	, 6km, and	for the path-average.		
Zero Order Fit	Float SDS	4	nlat*nlon*nh2*3*nthrsh	1 – 2,147,483,647	-
-			the log-normal model obtained		pDf.
		and for the	e path-average. In addition, 5 thre	esholds are used.	
HB Fit	Float SDS	4	nlat*nlon*nh2*3*nthrsh	-	-
	-		d from the HB pDf. Fitting param	eters are given at 2km	4km,
6km, and for the path-average.	In addition, 5 th	resholds ar			
fit2A25	Float SDS	4	nlat*nlon*nh2*3*nthrsh	-	-
	log-normal mod	del obtaine	d from the SRT pDf. Fitting paran	neters are given at 2km	i, 4km,
6km, and for the path-average.					
Reliability 0 th Order Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the Otl					
Reliability HB Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the HB					
Reliability 2A25 Fit	Float SDS	4	nlat*nlon*nh2*nthrsh	-	-
Reliability parameter for the SR					
rainMeanTH	Float SDS	4	nlat*nlon*nh3	0 - 3000	mm h ⁻¹
			ermined from the threshold meth		
determined from the fitting par	ameters fro the	'-th-order r	nethod' using a single 'Q' thresh	old for each height leve	<u>ار</u>

Temporal Coverage	Start Date: 1997-12-01	
	Stop Date: 2015-03-31	
Goographic Coverage	Latitude: 40°S – 40°N	
Geographic Coverage	Longitude: 180°W – 180°E	
Temporal Resolution	Monthly	
Horizontal Resolution	0.5° x 0.5°; nlat = 160, nlon = 720	
Average File Size	≈ 37 MB compressed	

3B31 Data Format Structure						
Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit		
Char Attribute	10,000	-	-	-		
Char Attribute	10,000	-	-	-		
ata						
Char Attribute	5,000	-	-	-		
specification of the	geometry of the grid	ds.				
Float SDS	4	nlat*nlon	0 – 3000	mm		
accumulated in each	n 0.5° x 0.5° box					
Float SDS	4	nlat*nlon	0 – 3000	mm		
from 2A12 accumul	ated in each 0.5° x 0).5° box				
Float SDS	4	nlat*nlon*nlayer	0-10	g m ⁻³		
er content from 2A1	.2 at each vertical la	yer in each 0.5° x 0.5	° box			
Float SDS	4	nlat*nlon*nlayer	0-10	g m ⁻³		
juid content from 2A	12 at each vertical l	ayer in each 0.5° x 0.	5° box	-		
Float SDS	4	nlat*nlon*nlayer	0-10	g m ⁻³		
liquid content from	2A12 at each vertica	al layer in each 0.5° x	0.5° box			
Integer SDS	4	nlat*nlon	1 - 10000	-		
f pixels with pixelSta	tus equal to zero for	r each grid. The majo	r effect of the pixelS	atus requirement		
ixTotalTMI is used to	compute the mont	thly means described	above.			
Float SDS	4	nlat*nlon	0 – 3000	mm		
accumulated in each	n 0.5° x 0.5° box					
Float SDS	4	nlat*nlon*nlayer	0-10	g m ⁻³		
ach vertical layer fro	m 2B31 accumulate	ed in each 0.5° x 0.5°	box	-		
Float SDS	4	nlat*nlon*nlayer	0-10	g m ⁻³		
each vertical layer fr	om 2B31 accumulat	ed in each 0.5° x 0.5°	° box	U		
Float SDS	4	nlat*nlon*nlayer	0-10	g m-3		
	r from 2B31 accumu	,	.5° box	-		
· · · ·	4	nlat*nlon	1 - 10000	-		
-	AB is used to compu		ns described above.			
Float SDS	4	nlat*nlon	-	-		
	alculated from the s		for each 0.5° x 0.5° b	ох		
	4					
Float SDS	4	nlat*nlon	-	-		
	Char Attribute Char Attribute ata Char Attribute specification of the second Float SDS accumulated in each Float SDS from 2A12 accumul Float SDS ter content from 2A1 Float SDS ter content from 2A1 Float SDS liquid content from 2A Float SDS liquid content from 2A Float SDS liquid content from 2A Float SDS f pixels with pixelStar pixTotalTMI is used to Float SDS accumulated in each Float SDS accumulated in each Float SDS each vertical layer fro Float SDS each vertical layer fro Float SDS at each vertical layer Integer SDS at each vertical layer Float SDS at each vertical layer Float SDS at each vertical layer Integer SDS f pixels npixTotalCON Float SDS 12 surface rainfall, ca	TypeRecord Size (bytes)Char Attribute10,000Char Attribute10,000ataChar AttributeChar Attribute5,000specification of the geometry of the gridFloat SDS4accumulated in each 0.5° x 0.5° boxFloat SDS4from 2A12 accumulated in each 0.5° x 0.5° boxFloat SDS4ter content from 2A12 at each vertical laFloat SDS4auid content from 2A12 at each vertical laFloat SDS4liquid content from 2A12 at each vertical laFloat SDS4spixels with pixelStatus equal to zero for pixTotalTMI is used to compute the monteriorFloat SDS4accumulated in each 0.5° x 0.5° boxFloat SDS4<	TypeRecord Size (bytes)Dim Size (# of records)Char Attribute10,000-Char Attribute10,000-ataChar Attribute5,000-Specification of the geometry of the grids.Float SDS4nlat*nlonaccumulated in each 0.5° x 0.5° boxFloat SDS4nlat*nlonfrom 2A12 accumulated in each 0.5° x 0.5° boxFloat SDS4nlat*nlon*nlayerFloat SDS4nlat*nlon*nlayer1000 content from 2A12 at each vertical layer in each 0.5° x 0.5° to xFloat SDS4nlat*nlon*nlayer1000 content from 2A12 at each vertical layer in each 0.5° x 0.5° koxFloat SDS4nlat*nlon*nlayer1000 content from 2A12 at each vertical layer in each 0.5° x 0.5° koxFloat SDS4nlat*nlon*nlayer1000 content from 2A12 at each vertical layer in each 0.5° x 0.5° koxFloat SDS4nlat*nlon*nlayer1000 content from 2A12 at each vertical layer in each 0.5° x 0.5° koxFloat SDS4nlat*nlon*nlayer1000 content from 2A12 at each vertical layer in each 0.5° x 0.5° koxFloat SDS4nlat*nlon*nlayer1000 content from 2B31 accumulated in each 0.5° x 0.5°Float SDS4nlat*nlon*nlayer1000 content from 2B31 accumulated in each 0.5° x 0.5°Float SDS4nlat*nlon*nlayer1000 content from 2B31 accumulated in each 0.5° x 0.5°Float SDS4nlat*nlon*nlayer1000 content from 2B31 accumulated in each 0.5° x 0.5°Float SDS4nlat*nlon*nlayer1000 content from 2B31 accumulated in each	TypeRecord Size (bytes)Dim Size (# of records)RangeChar Attribute10,000Char Attribute10,000ataChar Attribute5,000Specification of the geometry of the gridsFloat SDS4nlat*nlon0 – 3000accumulated in each 0.5° x 0.5° boxFloat SDS4nlat*nlon*nlayer0 – 10accumulated in each 0.5° x 0.5° boxFloat SDS4nlat*nlon*nlayer0 – 10ter content from 2A12 at each vertical layer in each 0.5° x 0.5° box-Float SDS4nlat*nlon*nlayer0 – 10uid content from 2A12 at each vertical layer in each 0.5° x 0.5° box-Float SDS4nlat*nlon*nlayer0 – 10liquid content from 2A12 at each vertical layer in each 0.5° x 0.5° box-Integer SDS4nlat*nlon1 – 10000f pixels with pixelStatus equal to zero for each grid. The major effect of the pixelSt-sixTotalTMI is used to compute the monthly means described aboveFloat SDS4nlat*nlon*nlayer0 – 10each vertical layer from 2B31 accumulated in each 0.5° x 0.5° box-Float SDS4nlat*nlon*nlayer0 – 10each vertical layer from 2B31 accumulated in each 0.5° x 0.5° box-Float SDS4nlat*nlon *nlayer0 – 10each vertical layer from 2B31 accumulated in each 0.5° x 0.5° box- <t< td=""></t<>		

Notes:

- The "scale by" column was omitted because none of the 3B31 variables are scaled.
- The dimension *nlayer* represents the number of profiling layers per grid box. There are 28 vertical layers (nlayer) that span from 0.5 km to 10 km by 0.5 km and then from 10 km to 18 km by 1 km.

3A46: Special Sensor Microwave Imager Rainfall

Tomporal Coverage	Start Date: 1997-12-01	
Temporal Coverage	Stop Date: 2015-03-31	
Goographic Coverage	Latitude: 90°S – 90°N	
Geographic Coverage	Longitude: 0° – 360°	
Temporal Resolution	Monthly	
Horizontal Resolution	1° x 1°; nlat = 80, nlon = 360	
Average File Size	≈ 300 KB uncompressed	

3A46 Data Format Structure										
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit					
ECS Core Metadata	Char Attribute	10,000	-	-	-					
ECS core metadata										
PS Metadata	Char Attribute	10,000	-	-	-					
Product specific metad	ata									
GridStructure	Char Attribute	5,000	-	-	-					
GridStructure gives the	specification of th	e geometry of the g	grids.							
SSMIdata	Float SDS	4	180*360*2	0 — 100 (1 st variable) 0 — 10 ⁹ (2 nd variable)	mm hr ⁻¹					
	-			SSM/I data averaged over 1° x 1° grid boxes and one month. The first variable is Precipitation Rate (mm/hr); the range is 0 to 100. The second variable is Number of Observations; the range is 0 to one billion.						

Note that the grids in SSM/I data are different than the standard TSDIS grids in the following ways:

- the longitude dimension precedes the latitude dimension;
- the longitude index begins at the Greenwich meridian;
- the latitude index begins at the northernmost row;
- the latitude range is -90° to +90°;
- Missing data are given the value of -9999.

3B42: TRMM and Other Satellites Precipitation

Temporal Coverage	Start Date: 1997-12-01 Stop Date: to present
Geographic Coverage	Latitude: 50°S – 50°N Longitude: 180°W – 180°E
Temporal Resolution	Monthly
Horizontal Resolution	0.25° x 0.25°; nlat = 400, nlon = 1440
Average File Size	≈ 0.71 MB compressed, ≈ 11 MB uncompressed

3B31 Data Format Structure							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit		
ECS Core Metadata	Char Attribute	10,000	-	-	-		
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-		
Product specific metadat	ta						
GridStructure	Char Attribute	5,000	-	-	-		
GridStructure gives the s	pecification of the g	eometry of the grid	S.				
precipitation	Float SDS	4	nlat*nlon	0 - 100	mm hr ⁻¹		
TRMM Multi-satellite pro	ecipitation analysis (TMPA) precipitation	n estimate				
relativeError	Float SDS	4	nlat*nlon	0 - 100	mm hr ⁻¹		
TMPA random error esti	mate						
satPrecipitationSource	Float SDS	4	nlat*nlon	-	-		
Flag to show source of d	ata in each box						
HQprecipitation	Float SDS	4	nlat*nlon	0 - 100	mm hr ⁻¹		
Pre-gauge-adjusted micr	owave precipitation	estimate in each gr	id box.				
IRprecipitation	Float SDS	4	nlat*nlon	0 - 100	mm hr ⁻¹		
Pre-gauge-adjusted infra	ared precipitation es	timate in each grid l	oox.				
satObservationTime	Integer SDS	1	nlat*nlon	-90 — 90	minute		
Satellite observation tim	e minus the time of	the granule in each	grid box.				

Notes:

• Missing data are given the value of -9999.9.

3B43: TRMM and Other Sources Precipitation

Temporal Coverage	Start Date: 1997-12-01 Stop Date: to present		
Geographic Coverage	Latitude: 50°S – 50°N Longitude: 180°W – 180°E		
Temporal Resolution	Monthly		
Horizontal Resolution	0.25° x 0.25°; nlat = 400, nlon = 1440		
Average File Size	≈ 4.95 MB compressed, ≈ 4.95 MB uncompressed		

3B31 Data Format Structure							
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit		
ECS Core Metadata	Char Attribute	10,000	-	-	-		
ECS core metadata							
PS Metadata	Char Attribute	10,000	-	-	-		
Product specific metadata							
GridStructure	Char Attribute	5,000	-	-	-		
GridStructure gives the spe	ecification of the ge	ometry of the grids.					
precipitation	Float SDS	4	nlat*nlon	0-100	mm hr ⁻¹		
Satellite/gauge precipitation	on estimate						
relativeError	Float SDS	4	nlat*nlon	0-100	mm hr ⁻¹		
Satellite/gauge random er	Satellite/gauge random error estimate						
gaugeRelativeWeighting	Integer SDS	1	nlat*nlon	0-100	percent		
Gauge relative weighting							

CSH: Convective and Stratiform Heating

Temporal Coverage Start Date: 1997-12-01 Stop Date: to present Stop Date: to present		
Geographic Coverage	Latitude: 50°S – 50°N Longitude: 180°W – 180°E	
Temporal Resolution	Monthly	
Horizontal Resolution	0.5° x 0.5°; nlat = 148, nlon = 720	
Average File Size	≈ 8.0 MB uncompressed	

3B31 Data Format Structure					
Name	Туре	Record Size (bytes)	Dim Size (# of records)	Range	Unit
ECS Core Metadata	Char Attribute	10,000	-	-	-
ECS core metadata					
PS Metadata	Char Attribute	10,000	-	-	-
Product specific metadata					
GridStructure	Char Attribute	5,000	-	-	-
GridStructure gives the specification of the geometry of the grids.					
LatentHeating	Float SDS	4	nlat*nlon*nlayer	-50 – 100	K hr-1
Satellite/gauge precipitation estimate					

Note that the layers are the same as those described for 3B31.

4.0 Options for Reading the Data

Examples that show how to read TRMM data files are shown throughout section 4. For the sake of consistency, each example will use TRMM 3B42 3-hourly data from 24 August 2012 at 12 UTC. The name of this file is *3B42.20120824.12.7.HDF.Z* and is described on page 55. This document will focus on the *HQprecipitation* variable. This tutorial assumes that the file is uncompressed, so its name ends in .HDF.

To uncompress the file on a UNIX-based system (including Mac OS X), use the following command: *uncompress 3B42.20120824.12.7.HDF.Z*.

Note that most of the gridded TRMM files do not include latitude or longitude metadata. The bounds for each product are specified in the preceding pages of this README as well as in the descriptions of each HDF file. TRMM data are stored as the center of grid boxes, so for example, 3B42 data that has latitude and longitude bounds of 50°S – 50°N and 180°W – 180°E, respectively, can be represented by a latitude array from -49.875 to +49.875 and a longitude array of -179.875 to +179.875, both with a grid spacing of 0.25.

4.1 Command Line Utilities and Programs

4.1.1 GrADS

The Grid Analysis and Display System (GrADS) is well-suited for the visualization of TRMM data. However, since the TRMM files do not have embedded latitude and longitude data, they are not considered "self-describing". This means that latitude and longitude information must be specified in a separate file for GrADS to correctly interpret the data.

A data descriptor file must be created that tells GrADS information about the latitude and longitude data within the TRMM 3B42 data file. Below are the contents of a sample data descriptor file.

Note that the example below only includes the *precipitation* variable. Simply list other variables underneath (or instead of) the *precipitation* variable to read in different data.

DSET 3B42.20120824.12.7.HDF UNDEF -9999.9 XDEF nlon 1440 LINEAR -179.875 0.25 YDEF nlat 400 LINEAR -49.875 0.25 TDEF nlat 1 LINEAR 12224Aug2012 3hr VARS 1 precipitation=>precip 0 3B42_Precipitation ENDVARS The following assumes that the contents above are saved in a file called *precip.ctl*. To open GrADS, type *grads* at the system prompt and then choose landscape or portrait mode.

At the GrADS prompt (ga->):

ga->xdfopen precip Scanning Descriptor File: precip SDF file 3B42.20120824.12.7.HDF is open as file 1 LON set to 0 360 LAT set to -49.875 49.875 LEV set to 0 0 Time values set: 2012:8:24:12 2012:8:24:12 E set to 1 1

The GrADS output should be the same as the text above in red.

To view an image of the precipitation data, type: ga-> d precip

To have GrADS shade the data instead of contouring, type: ga-> gxout shaded ga-> d precip

If you've already plotted the data with contours, you can clear before plotting the shaded data: ga-> clear graphics

There are numerous options for customizing plots in GrADS. For more information on using GrADS, or more information on Grads visit http://cola.gmu.edu/grads/.

4.1.2 MATLAB

MATLAB can be used to load, manipulate, and view TRMM precipitation data. To load the *precipitation* variable from the aforementioned TRMM file into MATLAB type:

>> precip = permute(hdfread('3B42.20120824.12.7.HDF','precipitation'),[2 1]);

This will load the data into a matrix called *precip*. Missing data are represented by *-9999.9*, but MATLAB doesn't know that this value refers to missing data. The simplest way to replace the missing numeric values with MATLAB's not-a-number (NaN) values, is to type:

>> precip(precip < 0) = NaN;

It is okay to set all values less than zero to NaN since precipitation rate is a positive quantity. Users with the Mapping Toolbox can plot the precipitation data on a map using the following code:

figure;
axesm('MapProjection','eqdcylin','maplatlimit',[-50 50],'maplonlimit',[-180 180],
'ParallelLabel', 'on', 'PlabelMeridian', 'west', 'MeridianLabel', 'on', 'MLabelParallel', 'south', 'FontSize', 6, 'FontWeight', 'bold', 'PLineLocation', 20, 'MLineLocation', 20);
latitudes = -49.875:0.25:49.875; % These must be explicitly defined since they are not in the file.
longitudes = -179.875:0.25:179.875;
[latGrid, lonGrid] = meshgrat(latitudes,longitudes);
geoshow(latGrid,lonGrid,double(precip),'DisplayType','texturemap');
caxis([0 5]);
% There are lots of color maps to choose from, run the command "doc colormap" to see them
colormap(flipud(hot(21)));
chandle = colorbar('Location','EastOutside','FontSize',6,'FontWeight','bold'); % This line places the colorbar
set(get(chandle,'ylabel'),'String','Rain Rate (mm/hr)','FontSize',10,'FontWeight','Bold'); % Set the colorbar's label
set(chandle,'YTick',0:5);
% You should plot the continent boundaries after the shading is done.
states = geoshape(shaperead('landareas', 'UseGeoCoords', true));
geoshow(states,'DefaultFaceColor','none','DefaultEdgeColor','k');
tightmap
title('24 August 2012 1200 UTC Rain Rate','FontSize',8,'FontWeight','bold');
print -dpng sampleTRMMmap.png

The code above should save a .png file that looks like Figure 1 below.

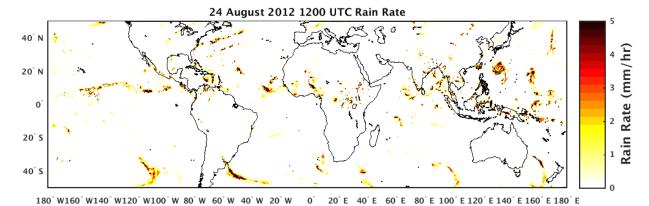
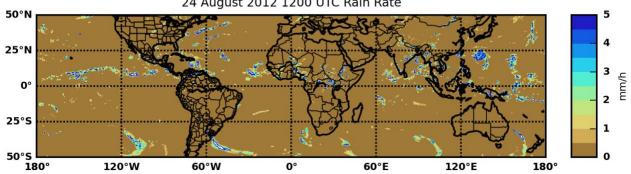


Figure 1. Sample map created in MATLAB showing TRMM 3B42 precipitation data.

4.1.3 Python


Like GrADS and MATLAB, Python can be used to read, manipulate, and plot data. Below is a script that can be used as-is within Python to read and plot the TRMM data. It was written to be as similar to the aforementioned MATLAB script as possible. Please note that you must have the free <u>numpy</u>, <u>matplotlib</u>, <u>basemap</u>, and <u>pyhdf</u> packages to use this script.

```
# This is a test script that reads and plots the TRMM 3B42 3-hourly data.
from mpl toolkits.basemap import Basemap, cm
import matplotlib.pyplot as plt
import numpy as np
from pyhdf.SD import SD, SDC
dataset = SD('/path/to/3B42.20120824.12.7.HDF', SDC.READ)
precip = dataset.select('precipitation')
precip = precip[:]
precip = np.transpose(precip)
theLats = np.arange(-49.875,50,0.25)
theLons = np.arange(-179.875,180,0.25)
# Set all the missing values less than 0 to NaNs
np.putmask(precip,precip<0,np.nan)
# Plot the figure, define the geographic bounds
fig = plt.figure(dpi=300)
latcorners = ([-50,50])
loncorners = ([-180,180])
m = Basemap(projection='cyl',\
llcrnrlat=latcorners[0],urcrnrlat=latcorners[1],llcrnrlon=loncorners[0],urcrnrlon=loncorners[1])
# Draw coastlines, state and country boundaries, edge of map.
m.drawcoastlines()
m.drawstates()
m.drawcountries()
# Draw filled contours.
clevs = np.arange(0, 5.01, 0.5)
# Define the latitude and longitude data
x, y = np.float32(np.meshgrid(theLons, theLats))
cs = m.contourf(x,y,precip,clevs,cmap=cm.GMT drywet,latlon=True)
parallels = np.arange(-50.,51,25.)
m.drawparallels(parallels,labels=[True,False,True,False])
meridians = np.arange(-180., 180., 60.)
m.drawmeridians(meridians,labels=[False,False,False,True])
```

Set the title and fonts plt.title('24 August 2012 1200 UTC Rain Rate') font = {'family' : 'normal', 'weight' : 'bold', 'size' : 6} plt.rc('font', **font) # Add colorbar cbar = m.colorbar(cs,location='right',pad="5%") cbar.set_label('mm/h')

plt.savefig('testTRMMmap.png',dpi=300)

The map shown below as Figure 2 results from the Python code above:

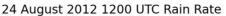


Figure 2. Sample map created in Python using TRMM 3B42 precipitation data.

4.1.4 hdp and ncdump

The HDF Toolkit ships with two binary executables, hdp and ncdump, that can be used to extract values from any HDF file. These are also available as standalone executable from the utilities folders found within each operating system at: ftp://ftp.hdfgroup.org/HDF/HDF Current/bin.

ncdump can only read HDF files if your local copy of netCDF was originally compiled with HDF support.

To dump the entire file: hdp <filename> or ncdump <filename>

To get just the header information: *hdp dumpsds -h <filename>* or *ncdump -h <filename>*

A partial example of output from hdp dumpsds -h 3B42.20120824.12.7.HDF is given below. (The *ncdump -h* output is similar.)

File attribu	tes:
Att	r0: Name = FileHeader
	Type = 8-bit signed char
	Count= 357
	Value = AlgorithmID=3B42;\012AlgorithmVersion=3B4
	2_7.0;\012FileName=3B42.20120824.12.7.HDF
	;\012GenerationDateTime=2012-10-26T14:07:
	33.000Z;\012StartGranuleDateTime=2012-08-
	24T10:30:00.000Z;\012StopGranuleDateTime=
	2012-08-24T13:29:59.999Z;\012GranuleNumbe
	r=;\012NumberOfSwaths=0;\012NumberOfGrids
	=1;\012GranuleStart=;\012TimeInterval=3 H
	OUR;\012ProcessingSystem=PPS;\012ProductV
	ersion=7;\012MissingData=;\012
Att	r1: Name = FileInfo
	Type = 8-bit signed char
	Count= 253
	Value = DataFormatVersion=m;\012TKCodeBuildVersio
	n=1;\012MetadataVersion=m;\012FormatPacka
	ge=HDF Version 4.2 Release 4, January 25,
	2009;\012BlueprintFilename=TRMM.V7.3B42.
	blueprint.xml;\012BlueprintVersion=BV_13;
	\012TKIOVersion=1.6;\012MetadataStyle=PVL
	;\012EndianType=LITTLE_ENDIAN;\012
Δtt	r2: Name = GridHeader
,	Type = 8-bit signed char
	Count= 231
	Value = BinMethod=ARITHMETIC_MEAN;\012Registratio
	n=CENTER;\012LatitudeResolution=0.25;\012
	LongitudeResolution=0.25;\012NorthBoundin
	gCoordinate=50;\012SouthBoundingCoordinat
	e=-50;\012EastBoundingCoordinate=180;\012
	WestBoundingCoordinate=-180;\012Origin=SO
	UTHWEST;\012
/ariable N	ame = precipitation
Ind	ex = 0
Тур	e= 32-bit floating point
Ref	. = 2
Cor	npression method = NONE
Rar	ik = 2
Nu	mber of attributes = 1
Din	n0: Name=nlon
	Size = 1440
	Scale Type = number-type not set
	Number of attributes = 0
Din	11: Name=nlat
2	Size = 400
	Scale Type = number-type not set
	Number of attributes = 0
Δ++	r0: Name = units
All	Type = 8-bit signed char
	i ype – o bit signed chai

Г

Count= 5 Value = mm/hr

... and so on ... This will list all of the variables in the same manner.

4.2 Tools/Programming

This section briefly explains some programs and websites that can be used for TRMM data access, manipulation, and viewing.

ncdump

The ncdump tool can be used as a simple browser for HDF data files, to display the dimension names and sizes; variable names, types, and shapes; attribute names and values; and optionally, the values of data for all variables or selected variables in a netCDF file. The most common use of ncdump is with the –h option, in which only the header information is displayed.

Command line syntax: ncdump [-c|-h] [-v ...] [[-b|-f] [c|f]] [-l len] [-n name] [-d n[,n]] filename **Options/Arguments:**

[-c] Coordinate variable data and header information

[-h] Header information only, no data

[-v var1[,...]] Data for variable(s) <var1>,... only data

[-f [c|f]] Full annotations for C or Fortran indices in data

[-l len] Line length maximum in data section (default 80)

[-n name] Name for netCDF (default derived from file name)

[-d n[,n]] Approximate floating-point values with less precision filename File name of input netCDF file

Note: the ncdump tool will only display variables whose ranks are great than 1. In other words, you will not see one dimensional vectors such as *satheight* using this tool.

The ncdump program can be found in bin directory of the HDF installation area. Consult your local computer system administrator for the specifics.

hdp

The hdp utility is a HDF dumper developed by HDF group at NCSA.

Command line syntax: hdp [-H] command [command options] <filelist>

-H Display usage information about the specified command.

If no command is specified, -H lists all commands.

Commands:

list lists contents of files in <filelist>

dumpsds displays data of SDSs in <filelist> dumpvd displays data of vdatas in <filelist>. dumpvg displays data of vgroups in <filelist>. dumprig displays data of RIs in <filelist>. dumpgr displays data of RIs in <filelist>.

Giovanni

TRMM data can be found on NASA's data visualization website called Giovanni at <u>https://giovanni.gsfc.nasa.gov/giovanni/</u>. Giovanni allows users to create maps, animations, hovmöller diagrams, vertical cross sections, and more using a number of TRMM products including the 3B42, 3B43, and 3A12 products.

HDFView

HDFView is a Java based graphical user interface created by the HDF Group, which can be used to browse TRMM HDF files. HDFView allows users to view all objects in the HDF file hierarchy, which is represented as a tree structure. It also allows users to browse the data within each variable.

HDFView download and documentation can be found at: <u>https://www.hdfgroup.org/products/java/hdfview/</u>.

5.0 Data Services

You can familiarize yourself with TRMM data at: https://disc.gsfc.nasa.gov/datasets?project=TRMM.

Once you know which data you want, you can use the following services:

OPeNDAP

Many TRMM products can be found on the GES DISC OPeNDAP website: <u>https://disc2.gesdisc.eosdis.nasa.gov/opendap/</u>. OPeNDAP allows users to access and manipulate subsets of data without downloading the entire files.

If you need assistance or would like to report a problem:

Email: gsfc-dl-help-disc at mail.nasa.gov Voice: 301-614-5224 Fax: 301-614-5268 Address: Goddard Earth Sciences Data and Information Services Center NASA Goddard Space Flight Center Code 610.2 Greenbelt, MD 20771 USA

6.0 More Information

The TRMM mission website is located at: <u>https://pmm.nasa.gov/trmm</u>.

Information on the TRMM instruments can be found at: <u>https://pmm.nasa.gov/TRMM/trmm-instruments</u>.

The GES DISC TRMM information portal can be found at:

https://disc.gsfc.nasa.gov/information/glossary?title=TRMM

TRMM Version 7 File Specifications: https://pps.gsfc.nasa.gov/Documents/filespec.TRMM.V7.pdf

TRMM Anomalous Granule Table: <u>ftp://gpmweb2.pps.eosdis.nasa.gov/tsdis/AB/docs/anomalous.html</u>

Other TRMM documents: http://pps.gsfc.nasa.gov/ppsdocuments.html

J. Simpson, Adler, R.F., and North, G.R., 1988: A proposed tropical rainfall measuring mission (TRMM) satellite. *Bull. Amer. Meteor. Soc.*, **69**, 278–295. (Link)

C. Kummerow, Barnes, W., Kozu, T., Shiue, J., Simpson, J, 1998: The tropical rainfall measuring mission (TRMM) sensor package. *J. Atmos. Oceanic Technol.*, **15**, 809–817. (Link)

Liu, Z. D. Ostrenga, W. Teng and S, Kempler, 2012, Tropical Rainfall Measuring Mission (TRMM) Precipitation Data Services for Research and Applications, Bulletin of the American Meteorological Society, doi: <u>http://dx.doi.org/10.1175/BAMS-D-11-00152.1</u> (Link)

7.0 Acknowledgements

The distribution of the TRMM dataset is funded by <u>NASA's Science Mission Directorate</u>.

Much of the information in this Readme document is from the Precipitation Measurement Mission (<u>https://pmm.nasa.gov/</u>) and the Precipitation Processing System (<u>https://pps.gsfc.nasa.gov/</u>) websites.